aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py98
1 files changed, 98 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py
new file mode 100644
index 00000000..13799115
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.py
@@ -0,0 +1,98 @@
+r"""Computation of graph non-randomness"""
+
+import math
+
+import networkx as nx
+from networkx.utils import not_implemented_for
+
+__all__ = ["non_randomness"]
+
+
+@not_implemented_for("directed")
+@not_implemented_for("multigraph")
+@nx._dispatchable(edge_attrs="weight")
+def non_randomness(G, k=None, weight="weight"):
+ """Compute the non-randomness of graph G.
+
+ The first returned value nr is the sum of non-randomness values of all
+ edges within the graph (where the non-randomness of an edge tends to be
+ small when the two nodes linked by that edge are from two different
+ communities).
+
+ The second computed value nr_rd is a relative measure that indicates
+ to what extent graph G is different from random graphs in terms
+ of probability. When it is close to 0, the graph tends to be more
+ likely generated by an Erdos Renyi model.
+
+ Parameters
+ ----------
+ G : NetworkX graph
+ Graph must be symmetric, connected, and without self-loops.
+
+ k : int
+ The number of communities in G.
+ If k is not set, the function will use a default community
+ detection algorithm to set it.
+
+ weight : string or None, optional (default=None)
+ The name of an edge attribute that holds the numerical value used
+ as a weight. If None, then each edge has weight 1, i.e., the graph is
+ binary.
+
+ Returns
+ -------
+ non-randomness : (float, float) tuple
+ Non-randomness, Relative non-randomness w.r.t.
+ Erdos Renyi random graphs.
+
+ Raises
+ ------
+ NetworkXException
+ if the input graph is not connected.
+ NetworkXError
+ if the input graph contains self-loops or if graph has no edges.
+
+ Examples
+ --------
+ >>> G = nx.karate_club_graph()
+ >>> nr, nr_rd = nx.non_randomness(G, 2)
+ >>> nr, nr_rd = nx.non_randomness(G, 2, "weight")
+
+ Notes
+ -----
+ This computes Eq. (4.4) and (4.5) in Ref. [1]_.
+
+ If a weight field is passed, this algorithm will use the eigenvalues
+ of the weighted adjacency matrix to compute Eq. (4.4) and (4.5).
+
+ References
+ ----------
+ .. [1] Xiaowei Ying and Xintao Wu,
+ On Randomness Measures for Social Networks,
+ SIAM International Conference on Data Mining. 2009
+ """
+ import numpy as np
+
+ # corner case: graph has no edges
+ if nx.is_empty(G):
+ raise nx.NetworkXError("non_randomness not applicable to empty graphs")
+ if not nx.is_connected(G):
+ raise nx.NetworkXException("Non connected graph.")
+ if len(list(nx.selfloop_edges(G))) > 0:
+ raise nx.NetworkXError("Graph must not contain self-loops")
+
+ if k is None:
+ k = len(tuple(nx.community.label_propagation_communities(G)))
+
+ # eq. 4.4
+ eigenvalues = np.linalg.eigvals(nx.to_numpy_array(G, weight=weight))
+ nr = float(np.real(np.sum(eigenvalues[:k])))
+
+ n = G.number_of_nodes()
+ m = G.number_of_edges()
+ p = (2 * k * m) / (n * (n - k))
+
+ # eq. 4.5
+ nr_rd = (nr - ((n - 2 * k) * p + k)) / math.sqrt(2 * k * p * (1 - p))
+
+ return nr, nr_rd