diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/lowest_common_ancestors.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/lowest_common_ancestors.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/lowest_common_ancestors.py | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/lowest_common_ancestors.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/lowest_common_ancestors.py new file mode 100644 index 00000000..d580018b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/lowest_common_ancestors.py @@ -0,0 +1,269 @@ +"""Algorithms for finding the lowest common ancestor of trees and DAGs.""" + +from collections import defaultdict +from collections.abc import Mapping, Set +from itertools import combinations_with_replacement + +import networkx as nx +from networkx.utils import UnionFind, arbitrary_element, not_implemented_for + +__all__ = [ + "all_pairs_lowest_common_ancestor", + "tree_all_pairs_lowest_common_ancestor", + "lowest_common_ancestor", +] + + +@not_implemented_for("undirected") +@nx._dispatchable +def all_pairs_lowest_common_ancestor(G, pairs=None): + """Return the lowest common ancestor of all pairs or the provided pairs + + Parameters + ---------- + G : NetworkX directed graph + + pairs : iterable of pairs of nodes, optional (default: all pairs) + The pairs of nodes of interest. + If None, will find the LCA of all pairs of nodes. + + Yields + ------ + ((node1, node2), lca) : 2-tuple + Where lca is least common ancestor of node1 and node2. + Note that for the default case, the order of the node pair is not considered, + e.g. you will not get both ``(a, b)`` and ``(b, a)`` + + Raises + ------ + NetworkXPointlessConcept + If `G` is null. + NetworkXError + If `G` is not a DAG. + + Examples + -------- + The default behavior is to yield the lowest common ancestor for all + possible combinations of nodes in `G`, including self-pairings: + + >>> G = nx.DiGraph([(0, 1), (0, 3), (1, 2)]) + >>> dict(nx.all_pairs_lowest_common_ancestor(G)) + {(0, 0): 0, (0, 1): 0, (0, 3): 0, (0, 2): 0, (1, 1): 1, (1, 3): 0, (1, 2): 1, (3, 3): 3, (3, 2): 0, (2, 2): 2} + + The pairs argument can be used to limit the output to only the + specified node pairings: + + >>> dict(nx.all_pairs_lowest_common_ancestor(G, pairs=[(1, 2), (2, 3)])) + {(1, 2): 1, (2, 3): 0} + + Notes + ----- + Only defined on non-null directed acyclic graphs. + + See Also + -------- + lowest_common_ancestor + """ + if not nx.is_directed_acyclic_graph(G): + raise nx.NetworkXError("LCA only defined on directed acyclic graphs.") + if len(G) == 0: + raise nx.NetworkXPointlessConcept("LCA meaningless on null graphs.") + + if pairs is None: + pairs = combinations_with_replacement(G, 2) + else: + # Convert iterator to iterable, if necessary. Trim duplicates. + pairs = dict.fromkeys(pairs) + # Verify that each of the nodes in the provided pairs is in G + nodeset = set(G) + for pair in pairs: + if set(pair) - nodeset: + raise nx.NodeNotFound( + f"Node(s) {set(pair) - nodeset} from pair {pair} not in G." + ) + + # Once input validation is done, construct the generator + def generate_lca_from_pairs(G, pairs): + ancestor_cache = {} + + for v, w in pairs: + if v not in ancestor_cache: + ancestor_cache[v] = nx.ancestors(G, v) + ancestor_cache[v].add(v) + if w not in ancestor_cache: + ancestor_cache[w] = nx.ancestors(G, w) + ancestor_cache[w].add(w) + + common_ancestors = ancestor_cache[v] & ancestor_cache[w] + + if common_ancestors: + common_ancestor = next(iter(common_ancestors)) + while True: + successor = None + for lower_ancestor in G.successors(common_ancestor): + if lower_ancestor in common_ancestors: + successor = lower_ancestor + break + if successor is None: + break + common_ancestor = successor + yield ((v, w), common_ancestor) + + return generate_lca_from_pairs(G, pairs) + + +@not_implemented_for("undirected") +@nx._dispatchable +def lowest_common_ancestor(G, node1, node2, default=None): + """Compute the lowest common ancestor of the given pair of nodes. + + Parameters + ---------- + G : NetworkX directed graph + + node1, node2 : nodes in the graph. + + default : object + Returned if no common ancestor between `node1` and `node2` + + Returns + ------- + The lowest common ancestor of node1 and node2, + or default if they have no common ancestors. + + Examples + -------- + >>> G = nx.DiGraph() + >>> nx.add_path(G, (0, 1, 2, 3)) + >>> nx.add_path(G, (0, 4, 3)) + >>> nx.lowest_common_ancestor(G, 2, 4) + 0 + + See Also + -------- + all_pairs_lowest_common_ancestor""" + + ans = list(all_pairs_lowest_common_ancestor(G, pairs=[(node1, node2)])) + if ans: + assert len(ans) == 1 + return ans[0][1] + return default + + +@not_implemented_for("undirected") +@nx._dispatchable +def tree_all_pairs_lowest_common_ancestor(G, root=None, pairs=None): + r"""Yield the lowest common ancestor for sets of pairs in a tree. + + Parameters + ---------- + G : NetworkX directed graph (must be a tree) + + root : node, optional (default: None) + The root of the subtree to operate on. + If None, assume the entire graph has exactly one source and use that. + + pairs : iterable or iterator of pairs of nodes, optional (default: None) + The pairs of interest. If None, Defaults to all pairs of nodes + under `root` that have a lowest common ancestor. + + Returns + ------- + lcas : generator of tuples `((u, v), lca)` where `u` and `v` are nodes + in `pairs` and `lca` is their lowest common ancestor. + + Examples + -------- + >>> import pprint + >>> G = nx.DiGraph([(1, 3), (2, 4), (1, 2)]) + >>> pprint.pprint(dict(nx.tree_all_pairs_lowest_common_ancestor(G))) + {(1, 1): 1, + (2, 1): 1, + (2, 2): 2, + (3, 1): 1, + (3, 2): 1, + (3, 3): 3, + (3, 4): 1, + (4, 1): 1, + (4, 2): 2, + (4, 4): 4} + + We can also use `pairs` argument to specify the pairs of nodes for which we + want to compute lowest common ancestors. Here is an example: + + >>> dict(nx.tree_all_pairs_lowest_common_ancestor(G, pairs=[(1, 4), (2, 3)])) + {(2, 3): 1, (1, 4): 1} + + Notes + ----- + Only defined on non-null trees represented with directed edges from + parents to children. Uses Tarjan's off-line lowest-common-ancestors + algorithm. Runs in time $O(4 \times (V + E + P))$ time, where 4 is the largest + value of the inverse Ackermann function likely to ever come up in actual + use, and $P$ is the number of pairs requested (or $V^2$ if all are needed). + + Tarjan, R. E. (1979), "Applications of path compression on balanced trees", + Journal of the ACM 26 (4): 690-715, doi:10.1145/322154.322161. + + See Also + -------- + all_pairs_lowest_common_ancestor: similar routine for general DAGs + lowest_common_ancestor: just a single pair for general DAGs + """ + if len(G) == 0: + raise nx.NetworkXPointlessConcept("LCA meaningless on null graphs.") + + # Index pairs of interest for efficient lookup from either side. + if pairs is not None: + pair_dict = defaultdict(set) + # See note on all_pairs_lowest_common_ancestor. + if not isinstance(pairs, Mapping | Set): + pairs = set(pairs) + for u, v in pairs: + for n in (u, v): + if n not in G: + msg = f"The node {str(n)} is not in the digraph." + raise nx.NodeNotFound(msg) + pair_dict[u].add(v) + pair_dict[v].add(u) + + # If root is not specified, find the exactly one node with in degree 0 and + # use it. Raise an error if none are found, or more than one is. Also check + # for any nodes with in degree larger than 1, which would imply G is not a + # tree. + if root is None: + for n, deg in G.in_degree: + if deg == 0: + if root is not None: + msg = "No root specified and tree has multiple sources." + raise nx.NetworkXError(msg) + root = n + # checking deg>1 is not sufficient for MultiDiGraphs + elif deg > 1 and len(G.pred[n]) > 1: + msg = "Tree LCA only defined on trees; use DAG routine." + raise nx.NetworkXError(msg) + if root is None: + raise nx.NetworkXError("Graph contains a cycle.") + + # Iterative implementation of Tarjan's offline lca algorithm + # as described in CLRS on page 521 (2nd edition)/page 584 (3rd edition) + uf = UnionFind() + ancestors = {} + for node in G: + ancestors[node] = uf[node] + + colors = defaultdict(bool) + for node in nx.dfs_postorder_nodes(G, root): + colors[node] = True + for v in pair_dict[node] if pairs is not None else G: + if colors[v]: + # If the user requested both directions of a pair, give it. + # Otherwise, just give one. + if pairs is not None and (node, v) in pairs: + yield (node, v), ancestors[uf[v]] + if pairs is None or (v, node) in pairs: + yield (v, node), ancestors[uf[v]] + if node != root: + parent = arbitrary_element(G.pred[node]) + uf.union(parent, node) + ancestors[uf[parent]] = parent |