aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py573
1 files changed, 573 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py
new file mode 100644
index 00000000..d7305a7b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/flow/tests/test_maxflow.py
@@ -0,0 +1,573 @@
+"""Maximum flow algorithms test suite."""
+
+import pytest
+
+import networkx as nx
+from networkx.algorithms.flow import (
+ boykov_kolmogorov,
+ build_flow_dict,
+ build_residual_network,
+ dinitz,
+ edmonds_karp,
+ preflow_push,
+ shortest_augmenting_path,
+)
+
+flow_funcs = {
+ boykov_kolmogorov,
+ dinitz,
+ edmonds_karp,
+ preflow_push,
+ shortest_augmenting_path,
+}
+
+max_min_funcs = {nx.maximum_flow, nx.minimum_cut}
+flow_value_funcs = {nx.maximum_flow_value, nx.minimum_cut_value}
+interface_funcs = max_min_funcs | flow_value_funcs
+all_funcs = flow_funcs | interface_funcs
+
+
+def compute_cutset(G, partition):
+ reachable, non_reachable = partition
+ cutset = set()
+ for u, nbrs in ((n, G[n]) for n in reachable):
+ cutset.update((u, v) for v in nbrs if v in non_reachable)
+ return cutset
+
+
+def validate_flows(G, s, t, flowDict, solnValue, capacity, flow_func):
+ errmsg = f"Assertion failed in function: {flow_func.__name__}"
+ assert set(G) == set(flowDict), errmsg
+ for u in G:
+ assert set(G[u]) == set(flowDict[u]), errmsg
+ excess = {u: 0 for u in flowDict}
+ for u in flowDict:
+ for v, flow in flowDict[u].items():
+ if capacity in G[u][v]:
+ assert flow <= G[u][v][capacity]
+ assert flow >= 0, errmsg
+ excess[u] -= flow
+ excess[v] += flow
+ for u, exc in excess.items():
+ if u == s:
+ assert exc == -solnValue, errmsg
+ elif u == t:
+ assert exc == solnValue, errmsg
+ else:
+ assert exc == 0, errmsg
+
+
+def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func):
+ errmsg = f"Assertion failed in function: {flow_func.__name__}"
+ assert all(n in G for n in partition[0]), errmsg
+ assert all(n in G for n in partition[1]), errmsg
+ cutset = compute_cutset(G, partition)
+ assert all(G.has_edge(u, v) for (u, v) in cutset), errmsg
+ assert solnValue == sum(G[u][v][capacity] for (u, v) in cutset), errmsg
+ H = G.copy()
+ H.remove_edges_from(cutset)
+ if not G.is_directed():
+ assert not nx.is_connected(H), errmsg
+ else:
+ assert not nx.is_strongly_connected(H), errmsg
+
+
+def compare_flows_and_cuts(G, s, t, solnValue, capacity="capacity"):
+ for flow_func in flow_funcs:
+ errmsg = f"Assertion failed in function: {flow_func.__name__}"
+ R = flow_func(G, s, t, capacity)
+ # Test both legacy and new implementations.
+ flow_value = R.graph["flow_value"]
+ flow_dict = build_flow_dict(G, R)
+ assert flow_value == solnValue, errmsg
+ validate_flows(G, s, t, flow_dict, solnValue, capacity, flow_func)
+ # Minimum cut
+ cut_value, partition = nx.minimum_cut(
+ G, s, t, capacity=capacity, flow_func=flow_func
+ )
+ validate_cuts(G, s, t, solnValue, partition, capacity, flow_func)
+
+
+class TestMaxflowMinCutCommon:
+ def test_graph1(self):
+ # Trivial undirected graph
+ G = nx.Graph()
+ G.add_edge(1, 2, capacity=1.0)
+
+ # solution flows
+ # {1: {2: 1.0}, 2: {1: 1.0}}
+
+ compare_flows_and_cuts(G, 1, 2, 1.0)
+
+ def test_graph2(self):
+ # A more complex undirected graph
+ # adapted from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One
+ G = nx.Graph()
+ G.add_edge("x", "a", capacity=3.0)
+ G.add_edge("x", "b", capacity=1.0)
+ G.add_edge("a", "c", capacity=3.0)
+ G.add_edge("b", "c", capacity=5.0)
+ G.add_edge("b", "d", capacity=4.0)
+ G.add_edge("d", "e", capacity=2.0)
+ G.add_edge("c", "y", capacity=2.0)
+ G.add_edge("e", "y", capacity=3.0)
+
+ # H
+ # {
+ # "x": {"a": 3, "b": 1},
+ # "a": {"c": 3, "x": 3},
+ # "b": {"c": 1, "d": 2, "x": 1},
+ # "c": {"a": 3, "b": 1, "y": 2},
+ # "d": {"b": 2, "e": 2},
+ # "e": {"d": 2, "y": 2},
+ # "y": {"c": 2, "e": 2},
+ # }
+
+ compare_flows_and_cuts(G, "x", "y", 4.0)
+
+ def test_digraph1(self):
+ # The classic directed graph example
+ G = nx.DiGraph()
+ G.add_edge("a", "b", capacity=1000.0)
+ G.add_edge("a", "c", capacity=1000.0)
+ G.add_edge("b", "c", capacity=1.0)
+ G.add_edge("b", "d", capacity=1000.0)
+ G.add_edge("c", "d", capacity=1000.0)
+
+ # H
+ # {
+ # "a": {"b": 1000.0, "c": 1000.0},
+ # "b": {"c": 0, "d": 1000.0},
+ # "c": {"d": 1000.0},
+ # "d": {},
+ # }
+
+ compare_flows_and_cuts(G, "a", "d", 2000.0)
+
+ def test_digraph2(self):
+ # An example in which some edges end up with zero flow.
+ G = nx.DiGraph()
+ G.add_edge("s", "b", capacity=2)
+ G.add_edge("s", "c", capacity=1)
+ G.add_edge("c", "d", capacity=1)
+ G.add_edge("d", "a", capacity=1)
+ G.add_edge("b", "a", capacity=2)
+ G.add_edge("a", "t", capacity=2)
+
+ # H
+ # {
+ # "s": {"b": 2, "c": 0},
+ # "c": {"d": 0},
+ # "d": {"a": 0},
+ # "b": {"a": 2},
+ # "a": {"t": 2},
+ # "t": {},
+ # }
+
+ compare_flows_and_cuts(G, "s", "t", 2)
+
+ def test_digraph3(self):
+ # A directed graph example from Cormen et al.
+ G = nx.DiGraph()
+ G.add_edge("s", "v1", capacity=16.0)
+ G.add_edge("s", "v2", capacity=13.0)
+ G.add_edge("v1", "v2", capacity=10.0)
+ G.add_edge("v2", "v1", capacity=4.0)
+ G.add_edge("v1", "v3", capacity=12.0)
+ G.add_edge("v3", "v2", capacity=9.0)
+ G.add_edge("v2", "v4", capacity=14.0)
+ G.add_edge("v4", "v3", capacity=7.0)
+ G.add_edge("v3", "t", capacity=20.0)
+ G.add_edge("v4", "t", capacity=4.0)
+
+ # H
+ # {
+ # "s": {"v1": 12.0, "v2": 11.0},
+ # "v2": {"v1": 0, "v4": 11.0},
+ # "v1": {"v2": 0, "v3": 12.0},
+ # "v3": {"v2": 0, "t": 19.0},
+ # "v4": {"v3": 7.0, "t": 4.0},
+ # "t": {},
+ # }
+
+ compare_flows_and_cuts(G, "s", "t", 23.0)
+
+ def test_digraph4(self):
+ # A more complex directed graph
+ # from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One
+ G = nx.DiGraph()
+ G.add_edge("x", "a", capacity=3.0)
+ G.add_edge("x", "b", capacity=1.0)
+ G.add_edge("a", "c", capacity=3.0)
+ G.add_edge("b", "c", capacity=5.0)
+ G.add_edge("b", "d", capacity=4.0)
+ G.add_edge("d", "e", capacity=2.0)
+ G.add_edge("c", "y", capacity=2.0)
+ G.add_edge("e", "y", capacity=3.0)
+
+ # H
+ # {
+ # "x": {"a": 2.0, "b": 1.0},
+ # "a": {"c": 2.0},
+ # "b": {"c": 0, "d": 1.0},
+ # "c": {"y": 2.0},
+ # "d": {"e": 1.0},
+ # "e": {"y": 1.0},
+ # "y": {},
+ # }
+
+ compare_flows_and_cuts(G, "x", "y", 3.0)
+
+ def test_wikipedia_dinitz_example(self):
+ # Nice example from https://en.wikipedia.org/wiki/Dinic's_algorithm
+ G = nx.DiGraph()
+ G.add_edge("s", 1, capacity=10)
+ G.add_edge("s", 2, capacity=10)
+ G.add_edge(1, 3, capacity=4)
+ G.add_edge(1, 4, capacity=8)
+ G.add_edge(1, 2, capacity=2)
+ G.add_edge(2, 4, capacity=9)
+ G.add_edge(3, "t", capacity=10)
+ G.add_edge(4, 3, capacity=6)
+ G.add_edge(4, "t", capacity=10)
+
+ # solution flows
+ # {
+ # 1: {2: 0, 3: 4, 4: 6},
+ # 2: {4: 9},
+ # 3: {"t": 9},
+ # 4: {3: 5, "t": 10},
+ # "s": {1: 10, 2: 9},
+ # "t": {},
+ # }
+
+ compare_flows_and_cuts(G, "s", "t", 19)
+
+ def test_optional_capacity(self):
+ # Test optional capacity parameter.
+ G = nx.DiGraph()
+ G.add_edge("x", "a", spam=3.0)
+ G.add_edge("x", "b", spam=1.0)
+ G.add_edge("a", "c", spam=3.0)
+ G.add_edge("b", "c", spam=5.0)
+ G.add_edge("b", "d", spam=4.0)
+ G.add_edge("d", "e", spam=2.0)
+ G.add_edge("c", "y", spam=2.0)
+ G.add_edge("e", "y", spam=3.0)
+
+ # solution flows
+ # {
+ # "x": {"a": 2.0, "b": 1.0},
+ # "a": {"c": 2.0},
+ # "b": {"c": 0, "d": 1.0},
+ # "c": {"y": 2.0},
+ # "d": {"e": 1.0},
+ # "e": {"y": 1.0},
+ # "y": {},
+ # }
+ solnValue = 3.0
+ s = "x"
+ t = "y"
+
+ compare_flows_and_cuts(G, s, t, solnValue, capacity="spam")
+
+ def test_digraph_infcap_edges(self):
+ # DiGraph with infinite capacity edges
+ G = nx.DiGraph()
+ G.add_edge("s", "a")
+ G.add_edge("s", "b", capacity=30)
+ G.add_edge("a", "c", capacity=25)
+ G.add_edge("b", "c", capacity=12)
+ G.add_edge("a", "t", capacity=60)
+ G.add_edge("c", "t")
+
+ # H
+ # {
+ # "s": {"a": 85, "b": 12},
+ # "a": {"c": 25, "t": 60},
+ # "b": {"c": 12},
+ # "c": {"t": 37},
+ # "t": {},
+ # }
+
+ compare_flows_and_cuts(G, "s", "t", 97)
+
+ # DiGraph with infinite capacity digon
+ G = nx.DiGraph()
+ G.add_edge("s", "a", capacity=85)
+ G.add_edge("s", "b", capacity=30)
+ G.add_edge("a", "c")
+ G.add_edge("c", "a")
+ G.add_edge("b", "c", capacity=12)
+ G.add_edge("a", "t", capacity=60)
+ G.add_edge("c", "t", capacity=37)
+
+ # H
+ # {
+ # "s": {"a": 85, "b": 12},
+ # "a": {"c": 25, "t": 60},
+ # "c": {"a": 0, "t": 37},
+ # "b": {"c": 12},
+ # "t": {},
+ # }
+
+ compare_flows_and_cuts(G, "s", "t", 97)
+
+ def test_digraph_infcap_path(self):
+ # Graph with infinite capacity (s, t)-path
+ G = nx.DiGraph()
+ G.add_edge("s", "a")
+ G.add_edge("s", "b", capacity=30)
+ G.add_edge("a", "c")
+ G.add_edge("b", "c", capacity=12)
+ G.add_edge("a", "t", capacity=60)
+ G.add_edge("c", "t")
+
+ for flow_func in all_funcs:
+ pytest.raises(nx.NetworkXUnbounded, flow_func, G, "s", "t")
+
+ def test_graph_infcap_edges(self):
+ # Undirected graph with infinite capacity edges
+ G = nx.Graph()
+ G.add_edge("s", "a")
+ G.add_edge("s", "b", capacity=30)
+ G.add_edge("a", "c", capacity=25)
+ G.add_edge("b", "c", capacity=12)
+ G.add_edge("a", "t", capacity=60)
+ G.add_edge("c", "t")
+
+ # H
+ # {
+ # "s": {"a": 85, "b": 12},
+ # "a": {"c": 25, "s": 85, "t": 60},
+ # "b": {"c": 12, "s": 12},
+ # "c": {"a": 25, "b": 12, "t": 37},
+ # "t": {"a": 60, "c": 37},
+ # }
+
+ compare_flows_and_cuts(G, "s", "t", 97)
+
+ def test_digraph5(self):
+ # From ticket #429 by mfrasca.
+ G = nx.DiGraph()
+ G.add_edge("s", "a", capacity=2)
+ G.add_edge("s", "b", capacity=2)
+ G.add_edge("a", "b", capacity=5)
+ G.add_edge("a", "t", capacity=1)
+ G.add_edge("b", "a", capacity=1)
+ G.add_edge("b", "t", capacity=3)
+ # flow solution
+ # {
+ # "a": {"b": 1, "t": 1},
+ # "b": {"a": 0, "t": 3},
+ # "s": {"a": 2, "b": 2},
+ # "t": {},
+ # }
+ compare_flows_and_cuts(G, "s", "t", 4)
+
+ def test_disconnected(self):
+ G = nx.Graph()
+ G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
+ G.remove_node(1)
+ assert nx.maximum_flow_value(G, 0, 3) == 0
+ # flow solution
+ # {0: {}, 2: {3: 0}, 3: {2: 0}}
+ compare_flows_and_cuts(G, 0, 3, 0)
+
+ def test_source_target_not_in_graph(self):
+ G = nx.Graph()
+ G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
+ G.remove_node(0)
+ for flow_func in all_funcs:
+ pytest.raises(nx.NetworkXError, flow_func, G, 0, 3)
+ G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
+ G.remove_node(3)
+ for flow_func in all_funcs:
+ pytest.raises(nx.NetworkXError, flow_func, G, 0, 3)
+
+ def test_source_target_coincide(self):
+ G = nx.Graph()
+ G.add_node(0)
+ for flow_func in all_funcs:
+ pytest.raises(nx.NetworkXError, flow_func, G, 0, 0)
+
+ def test_multigraphs_raise(self):
+ G = nx.MultiGraph()
+ M = nx.MultiDiGraph()
+ G.add_edges_from([(0, 1), (1, 0)], capacity=True)
+ for flow_func in all_funcs:
+ pytest.raises(nx.NetworkXError, flow_func, G, 0, 0)
+
+
+class TestMaxFlowMinCutInterface:
+ def setup_method(self):
+ G = nx.DiGraph()
+ G.add_edge("x", "a", capacity=3.0)
+ G.add_edge("x", "b", capacity=1.0)
+ G.add_edge("a", "c", capacity=3.0)
+ G.add_edge("b", "c", capacity=5.0)
+ G.add_edge("b", "d", capacity=4.0)
+ G.add_edge("d", "e", capacity=2.0)
+ G.add_edge("c", "y", capacity=2.0)
+ G.add_edge("e", "y", capacity=3.0)
+ self.G = G
+ H = nx.DiGraph()
+ H.add_edge(0, 1, capacity=1.0)
+ H.add_edge(1, 2, capacity=1.0)
+ self.H = H
+
+ def test_flow_func_not_callable(self):
+ elements = ["this_should_be_callable", 10, {1, 2, 3}]
+ G = nx.Graph()
+ G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
+ for flow_func in interface_funcs:
+ for element in elements:
+ pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element)
+ pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element)
+
+ def test_flow_func_parameters(self):
+ G = self.G
+ fv = 3.0
+ for interface_func in interface_funcs:
+ for flow_func in flow_funcs:
+ errmsg = (
+ f"Assertion failed in function: {flow_func.__name__} "
+ f"in interface {interface_func.__name__}"
+ )
+ result = interface_func(G, "x", "y", flow_func=flow_func)
+ if interface_func in max_min_funcs:
+ result = result[0]
+ assert fv == result, errmsg
+
+ def test_minimum_cut_no_cutoff(self):
+ G = self.G
+ pytest.raises(
+ nx.NetworkXError,
+ nx.minimum_cut,
+ G,
+ "x",
+ "y",
+ flow_func=preflow_push,
+ cutoff=1.0,
+ )
+ pytest.raises(
+ nx.NetworkXError,
+ nx.minimum_cut_value,
+ G,
+ "x",
+ "y",
+ flow_func=preflow_push,
+ cutoff=1.0,
+ )
+
+ def test_kwargs(self):
+ G = self.H
+ fv = 1.0
+ to_test = (
+ (shortest_augmenting_path, {"two_phase": True}),
+ (preflow_push, {"global_relabel_freq": 5}),
+ )
+ for interface_func in interface_funcs:
+ for flow_func, kwargs in to_test:
+ errmsg = (
+ f"Assertion failed in function: {flow_func.__name__} "
+ f"in interface {interface_func.__name__}"
+ )
+ result = interface_func(G, 0, 2, flow_func=flow_func, **kwargs)
+ if interface_func in max_min_funcs:
+ result = result[0]
+ assert fv == result, errmsg
+
+ def test_kwargs_default_flow_func(self):
+ G = self.H
+ for interface_func in interface_funcs:
+ pytest.raises(
+ nx.NetworkXError, interface_func, G, 0, 1, global_relabel_freq=2
+ )
+
+ def test_reusing_residual(self):
+ G = self.G
+ fv = 3.0
+ s, t = "x", "y"
+ R = build_residual_network(G, "capacity")
+ for interface_func in interface_funcs:
+ for flow_func in flow_funcs:
+ errmsg = (
+ f"Assertion failed in function: {flow_func.__name__} "
+ f"in interface {interface_func.__name__}"
+ )
+ for i in range(3):
+ result = interface_func(
+ G, "x", "y", flow_func=flow_func, residual=R
+ )
+ if interface_func in max_min_funcs:
+ result = result[0]
+ assert fv == result, errmsg
+
+
+# Tests specific to one algorithm
+def test_preflow_push_global_relabel_freq():
+ G = nx.DiGraph()
+ G.add_edge(1, 2, capacity=1)
+ R = preflow_push(G, 1, 2, global_relabel_freq=None)
+ assert R.graph["flow_value"] == 1
+ pytest.raises(nx.NetworkXError, preflow_push, G, 1, 2, global_relabel_freq=-1)
+
+
+def test_preflow_push_makes_enough_space():
+ # From ticket #1542
+ G = nx.DiGraph()
+ nx.add_path(G, [0, 1, 3], capacity=1)
+ nx.add_path(G, [1, 2, 3], capacity=1)
+ R = preflow_push(G, 0, 3, value_only=False)
+ assert R.graph["flow_value"] == 1
+
+
+def test_shortest_augmenting_path_two_phase():
+ k = 5
+ p = 1000
+ G = nx.DiGraph()
+ for i in range(k):
+ G.add_edge("s", (i, 0), capacity=1)
+ nx.add_path(G, ((i, j) for j in range(p)), capacity=1)
+ G.add_edge((i, p - 1), "t", capacity=1)
+ R = shortest_augmenting_path(G, "s", "t", two_phase=True)
+ assert R.graph["flow_value"] == k
+ R = shortest_augmenting_path(G, "s", "t", two_phase=False)
+ assert R.graph["flow_value"] == k
+
+
+class TestCutoff:
+ def test_cutoff(self):
+ k = 5
+ p = 1000
+ G = nx.DiGraph()
+ for i in range(k):
+ G.add_edge("s", (i, 0), capacity=2)
+ nx.add_path(G, ((i, j) for j in range(p)), capacity=2)
+ G.add_edge((i, p - 1), "t", capacity=2)
+ R = shortest_augmenting_path(G, "s", "t", two_phase=True, cutoff=k)
+ assert k <= R.graph["flow_value"] <= (2 * k)
+ R = shortest_augmenting_path(G, "s", "t", two_phase=False, cutoff=k)
+ assert k <= R.graph["flow_value"] <= (2 * k)
+ R = edmonds_karp(G, "s", "t", cutoff=k)
+ assert k <= R.graph["flow_value"] <= (2 * k)
+ R = dinitz(G, "s", "t", cutoff=k)
+ assert k <= R.graph["flow_value"] <= (2 * k)
+ R = boykov_kolmogorov(G, "s", "t", cutoff=k)
+ assert k <= R.graph["flow_value"] <= (2 * k)
+
+ def test_complete_graph_cutoff(self):
+ G = nx.complete_graph(5)
+ nx.set_edge_attributes(G, {(u, v): 1 for u, v in G.edges()}, "capacity")
+ for flow_func in [
+ shortest_augmenting_path,
+ edmonds_karp,
+ dinitz,
+ boykov_kolmogorov,
+ ]:
+ for cutoff in [3, 2, 1]:
+ result = nx.maximum_flow_value(
+ G, 0, 4, flow_func=flow_func, cutoff=cutoff
+ )
+ assert cutoff == result, f"cutoff error in {flow_func.__name__}"