about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/components
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/components
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/components')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/__init__.py6
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/attracting.py115
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/biconnected.py394
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/connected.py216
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/semiconnected.py71
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/strongly_connected.py351
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_attracting.py70
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_biconnected.py248
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_connected.py138
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_semiconnected.py55
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py193
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py96
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/components/weakly_connected.py197
14 files changed, 2150 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/__init__.py
new file mode 100644
index 00000000..f9ae2cab
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/__init__.py
@@ -0,0 +1,6 @@
+from .connected import *
+from .strongly_connected import *
+from .weakly_connected import *
+from .attracting import *
+from .biconnected import *
+from .semiconnected import *
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/attracting.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/attracting.py
new file mode 100644
index 00000000..3d77cd93
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/attracting.py
@@ -0,0 +1,115 @@
+"""Attracting components."""
+
+import networkx as nx
+from networkx.utils.decorators import not_implemented_for
+
+__all__ = [
+    "number_attracting_components",
+    "attracting_components",
+    "is_attracting_component",
+]
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def attracting_components(G):
+    """Generates the attracting components in `G`.
+
+    An attracting component in a directed graph `G` is a strongly connected
+    component with the property that a random walker on the graph will never
+    leave the component, once it enters the component.
+
+    The nodes in attracting components can also be thought of as recurrent
+    nodes.  If a random walker enters the attractor containing the node, then
+    the node will be visited infinitely often.
+
+    To obtain induced subgraphs on each component use:
+    ``(G.subgraph(c).copy() for c in attracting_components(G))``
+
+    Parameters
+    ----------
+    G : DiGraph, MultiDiGraph
+        The graph to be analyzed.
+
+    Returns
+    -------
+    attractors : generator of sets
+        A generator of sets of nodes, one for each attracting component of G.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is undirected.
+
+    See Also
+    --------
+    number_attracting_components
+    is_attracting_component
+
+    """
+    scc = list(nx.strongly_connected_components(G))
+    cG = nx.condensation(G, scc)
+    for n in cG:
+        if cG.out_degree(n) == 0:
+            yield scc[n]
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def number_attracting_components(G):
+    """Returns the number of attracting components in `G`.
+
+    Parameters
+    ----------
+    G : DiGraph, MultiDiGraph
+        The graph to be analyzed.
+
+    Returns
+    -------
+    n : int
+        The number of attracting components in G.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is undirected.
+
+    See Also
+    --------
+    attracting_components
+    is_attracting_component
+
+    """
+    return sum(1 for ac in attracting_components(G))
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def is_attracting_component(G):
+    """Returns True if `G` consists of a single attracting component.
+
+    Parameters
+    ----------
+    G : DiGraph, MultiDiGraph
+        The graph to be analyzed.
+
+    Returns
+    -------
+    attracting : bool
+        True if `G` has a single attracting component. Otherwise, False.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is undirected.
+
+    See Also
+    --------
+    attracting_components
+    number_attracting_components
+
+    """
+    ac = list(attracting_components(G))
+    if len(ac) == 1:
+        return len(ac[0]) == len(G)
+    return False
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/biconnected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/biconnected.py
new file mode 100644
index 00000000..fd0f3865
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/biconnected.py
@@ -0,0 +1,394 @@
+"""Biconnected components and articulation points."""
+
+from itertools import chain
+
+import networkx as nx
+from networkx.utils.decorators import not_implemented_for
+
+__all__ = [
+    "biconnected_components",
+    "biconnected_component_edges",
+    "is_biconnected",
+    "articulation_points",
+]
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def is_biconnected(G):
+    """Returns True if the graph is biconnected, False otherwise.
+
+    A graph is biconnected if, and only if, it cannot be disconnected by
+    removing only one node (and all edges incident on that node).  If
+    removing a node increases the number of disconnected components
+    in the graph, that node is called an articulation point, or cut
+    vertex.  A biconnected graph has no articulation points.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        An undirected graph.
+
+    Returns
+    -------
+    biconnected : bool
+        True if the graph is biconnected, False otherwise.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is not undirected.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> print(nx.is_biconnected(G))
+    False
+    >>> G.add_edge(0, 3)
+    >>> print(nx.is_biconnected(G))
+    True
+
+    See Also
+    --------
+    biconnected_components
+    articulation_points
+    biconnected_component_edges
+    is_strongly_connected
+    is_weakly_connected
+    is_connected
+    is_semiconnected
+
+    Notes
+    -----
+    The algorithm to find articulation points and biconnected
+    components is implemented using a non-recursive depth-first-search
+    (DFS) that keeps track of the highest level that back edges reach
+    in the DFS tree.  A node `n` is an articulation point if, and only
+    if, there exists a subtree rooted at `n` such that there is no
+    back edge from any successor of `n` that links to a predecessor of
+    `n` in the DFS tree.  By keeping track of all the edges traversed
+    by the DFS we can obtain the biconnected components because all
+    edges of a bicomponent will be traversed consecutively between
+    articulation points.
+
+    References
+    ----------
+    .. [1] Hopcroft, J.; Tarjan, R. (1973).
+       "Efficient algorithms for graph manipulation".
+       Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
+
+    """
+    bccs = biconnected_components(G)
+    try:
+        bcc = next(bccs)
+    except StopIteration:
+        # No bicomponents (empty graph?)
+        return False
+    try:
+        next(bccs)
+    except StopIteration:
+        # Only one bicomponent
+        return len(bcc) == len(G)
+    else:
+        # Multiple bicomponents
+        return False
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def biconnected_component_edges(G):
+    """Returns a generator of lists of edges, one list for each biconnected
+    component of the input graph.
+
+    Biconnected components are maximal subgraphs such that the removal of a
+    node (and all edges incident on that node) will not disconnect the
+    subgraph.  Note that nodes may be part of more than one biconnected
+    component.  Those nodes are articulation points, or cut vertices.
+    However, each edge belongs to one, and only one, biconnected component.
+
+    Notice that by convention a dyad is considered a biconnected component.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        An undirected graph.
+
+    Returns
+    -------
+    edges : generator of lists
+        Generator of lists of edges, one list for each bicomponent.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is not undirected.
+
+    Examples
+    --------
+    >>> G = nx.barbell_graph(4, 2)
+    >>> print(nx.is_biconnected(G))
+    False
+    >>> bicomponents_edges = list(nx.biconnected_component_edges(G))
+    >>> len(bicomponents_edges)
+    5
+    >>> G.add_edge(2, 8)
+    >>> print(nx.is_biconnected(G))
+    True
+    >>> bicomponents_edges = list(nx.biconnected_component_edges(G))
+    >>> len(bicomponents_edges)
+    1
+
+    See Also
+    --------
+    is_biconnected,
+    biconnected_components,
+    articulation_points,
+
+    Notes
+    -----
+    The algorithm to find articulation points and biconnected
+    components is implemented using a non-recursive depth-first-search
+    (DFS) that keeps track of the highest level that back edges reach
+    in the DFS tree.  A node `n` is an articulation point if, and only
+    if, there exists a subtree rooted at `n` such that there is no
+    back edge from any successor of `n` that links to a predecessor of
+    `n` in the DFS tree.  By keeping track of all the edges traversed
+    by the DFS we can obtain the biconnected components because all
+    edges of a bicomponent will be traversed consecutively between
+    articulation points.
+
+    References
+    ----------
+    .. [1] Hopcroft, J.; Tarjan, R. (1973).
+           "Efficient algorithms for graph manipulation".
+           Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
+
+    """
+    yield from _biconnected_dfs(G, components=True)
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def biconnected_components(G):
+    """Returns a generator of sets of nodes, one set for each biconnected
+    component of the graph
+
+    Biconnected components are maximal subgraphs such that the removal of a
+    node (and all edges incident on that node) will not disconnect the
+    subgraph. Note that nodes may be part of more than one biconnected
+    component.  Those nodes are articulation points, or cut vertices.  The
+    removal of articulation points will increase the number of connected
+    components of the graph.
+
+    Notice that by convention a dyad is considered a biconnected component.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        An undirected graph.
+
+    Returns
+    -------
+    nodes : generator
+        Generator of sets of nodes, one set for each biconnected component.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is not undirected.
+
+    Examples
+    --------
+    >>> G = nx.lollipop_graph(5, 1)
+    >>> print(nx.is_biconnected(G))
+    False
+    >>> bicomponents = list(nx.biconnected_components(G))
+    >>> len(bicomponents)
+    2
+    >>> G.add_edge(0, 5)
+    >>> print(nx.is_biconnected(G))
+    True
+    >>> bicomponents = list(nx.biconnected_components(G))
+    >>> len(bicomponents)
+    1
+
+    You can generate a sorted list of biconnected components, largest
+    first, using sort.
+
+    >>> G.remove_edge(0, 5)
+    >>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
+    [5, 2]
+
+    If you only want the largest connected component, it's more
+    efficient to use max instead of sort.
+
+    >>> Gc = max(nx.biconnected_components(G), key=len)
+
+    To create the components as subgraphs use:
+    ``(G.subgraph(c).copy() for c in biconnected_components(G))``
+
+    See Also
+    --------
+    is_biconnected
+    articulation_points
+    biconnected_component_edges
+    k_components : this function is a special case where k=2
+    bridge_components : similar to this function, but is defined using
+        2-edge-connectivity instead of 2-node-connectivity.
+
+    Notes
+    -----
+    The algorithm to find articulation points and biconnected
+    components is implemented using a non-recursive depth-first-search
+    (DFS) that keeps track of the highest level that back edges reach
+    in the DFS tree.  A node `n` is an articulation point if, and only
+    if, there exists a subtree rooted at `n` such that there is no
+    back edge from any successor of `n` that links to a predecessor of
+    `n` in the DFS tree.  By keeping track of all the edges traversed
+    by the DFS we can obtain the biconnected components because all
+    edges of a bicomponent will be traversed consecutively between
+    articulation points.
+
+    References
+    ----------
+    .. [1] Hopcroft, J.; Tarjan, R. (1973).
+           "Efficient algorithms for graph manipulation".
+           Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
+
+    """
+    for comp in _biconnected_dfs(G, components=True):
+        yield set(chain.from_iterable(comp))
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def articulation_points(G):
+    """Yield the articulation points, or cut vertices, of a graph.
+
+    An articulation point or cut vertex is any node whose removal (along with
+    all its incident edges) increases the number of connected components of
+    a graph.  An undirected connected graph without articulation points is
+    biconnected. Articulation points belong to more than one biconnected
+    component of a graph.
+
+    Notice that by convention a dyad is considered a biconnected component.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        An undirected graph.
+
+    Yields
+    ------
+    node
+        An articulation point in the graph.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is not undirected.
+
+    Examples
+    --------
+
+    >>> G = nx.barbell_graph(4, 2)
+    >>> print(nx.is_biconnected(G))
+    False
+    >>> len(list(nx.articulation_points(G)))
+    4
+    >>> G.add_edge(2, 8)
+    >>> print(nx.is_biconnected(G))
+    True
+    >>> len(list(nx.articulation_points(G)))
+    0
+
+    See Also
+    --------
+    is_biconnected
+    biconnected_components
+    biconnected_component_edges
+
+    Notes
+    -----
+    The algorithm to find articulation points and biconnected
+    components is implemented using a non-recursive depth-first-search
+    (DFS) that keeps track of the highest level that back edges reach
+    in the DFS tree.  A node `n` is an articulation point if, and only
+    if, there exists a subtree rooted at `n` such that there is no
+    back edge from any successor of `n` that links to a predecessor of
+    `n` in the DFS tree.  By keeping track of all the edges traversed
+    by the DFS we can obtain the biconnected components because all
+    edges of a bicomponent will be traversed consecutively between
+    articulation points.
+
+    References
+    ----------
+    .. [1] Hopcroft, J.; Tarjan, R. (1973).
+           "Efficient algorithms for graph manipulation".
+           Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
+
+    """
+    seen = set()
+    for articulation in _biconnected_dfs(G, components=False):
+        if articulation not in seen:
+            seen.add(articulation)
+            yield articulation
+
+
+@not_implemented_for("directed")
+def _biconnected_dfs(G, components=True):
+    # depth-first search algorithm to generate articulation points
+    # and biconnected components
+    visited = set()
+    for start in G:
+        if start in visited:
+            continue
+        discovery = {start: 0}  # time of first discovery of node during search
+        low = {start: 0}
+        root_children = 0
+        visited.add(start)
+        edge_stack = []
+        stack = [(start, start, iter(G[start]))]
+        edge_index = {}
+        while stack:
+            grandparent, parent, children = stack[-1]
+            try:
+                child = next(children)
+                if grandparent == child:
+                    continue
+                if child in visited:
+                    if discovery[child] <= discovery[parent]:  # back edge
+                        low[parent] = min(low[parent], discovery[child])
+                        if components:
+                            edge_index[parent, child] = len(edge_stack)
+                            edge_stack.append((parent, child))
+                else:
+                    low[child] = discovery[child] = len(discovery)
+                    visited.add(child)
+                    stack.append((parent, child, iter(G[child])))
+                    if components:
+                        edge_index[parent, child] = len(edge_stack)
+                        edge_stack.append((parent, child))
+
+            except StopIteration:
+                stack.pop()
+                if len(stack) > 1:
+                    if low[parent] >= discovery[grandparent]:
+                        if components:
+                            ind = edge_index[grandparent, parent]
+                            yield edge_stack[ind:]
+                            del edge_stack[ind:]
+
+                        else:
+                            yield grandparent
+                    low[grandparent] = min(low[parent], low[grandparent])
+                elif stack:  # length 1 so grandparent is root
+                    root_children += 1
+                    if components:
+                        ind = edge_index[grandparent, parent]
+                        yield edge_stack[ind:]
+                        del edge_stack[ind:]
+        if not components:
+            # root node is articulation point if it has more than 1 child
+            if root_children > 1:
+                yield start
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/connected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/connected.py
new file mode 100644
index 00000000..ebe0d8c1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/connected.py
@@ -0,0 +1,216 @@
+"""Connected components."""
+
+import networkx as nx
+from networkx.utils.decorators import not_implemented_for
+
+from ...utils import arbitrary_element
+
+__all__ = [
+    "number_connected_components",
+    "connected_components",
+    "is_connected",
+    "node_connected_component",
+]
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def connected_components(G):
+    """Generate connected components.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+       An undirected graph
+
+    Returns
+    -------
+    comp : generator of sets
+       A generator of sets of nodes, one for each component of G.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is directed.
+
+    Examples
+    --------
+    Generate a sorted list of connected components, largest first.
+
+    >>> G = nx.path_graph(4)
+    >>> nx.add_path(G, [10, 11, 12])
+    >>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
+    [4, 3]
+
+    If you only want the largest connected component, it's more
+    efficient to use max instead of sort.
+
+    >>> largest_cc = max(nx.connected_components(G), key=len)
+
+    To create the induced subgraph of each component use:
+
+    >>> S = [G.subgraph(c).copy() for c in nx.connected_components(G)]
+
+    See Also
+    --------
+    strongly_connected_components
+    weakly_connected_components
+
+    Notes
+    -----
+    For undirected graphs only.
+
+    """
+    seen = set()
+    n = len(G)
+    for v in G:
+        if v not in seen:
+            c = _plain_bfs(G, n, v)
+            seen.update(c)
+            yield c
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def number_connected_components(G):
+    """Returns the number of connected components.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+       An undirected graph.
+
+    Returns
+    -------
+    n : integer
+       Number of connected components
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is directed.
+
+    Examples
+    --------
+    >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)])
+    >>> nx.number_connected_components(G)
+    3
+
+    See Also
+    --------
+    connected_components
+    number_weakly_connected_components
+    number_strongly_connected_components
+
+    Notes
+    -----
+    For undirected graphs only.
+
+    """
+    return sum(1 for cc in connected_components(G))
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def is_connected(G):
+    """Returns True if the graph is connected, False otherwise.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+       An undirected graph.
+
+    Returns
+    -------
+    connected : bool
+      True if the graph is connected, false otherwise.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is directed.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> print(nx.is_connected(G))
+    True
+
+    See Also
+    --------
+    is_strongly_connected
+    is_weakly_connected
+    is_semiconnected
+    is_biconnected
+    connected_components
+
+    Notes
+    -----
+    For undirected graphs only.
+
+    """
+    n = len(G)
+    if n == 0:
+        raise nx.NetworkXPointlessConcept(
+            "Connectivity is undefined for the null graph."
+        )
+    return sum(1 for node in _plain_bfs(G, n, arbitrary_element(G))) == len(G)
+
+
+@not_implemented_for("directed")
+@nx._dispatchable
+def node_connected_component(G, n):
+    """Returns the set of nodes in the component of graph containing node n.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+       An undirected graph.
+
+    n : node label
+       A node in G
+
+    Returns
+    -------
+    comp : set
+       A set of nodes in the component of G containing node n.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is directed.
+
+    Examples
+    --------
+    >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)])
+    >>> nx.node_connected_component(G, 0)  # nodes of component that contains node 0
+    {0, 1, 2}
+
+    See Also
+    --------
+    connected_components
+
+    Notes
+    -----
+    For undirected graphs only.
+
+    """
+    return _plain_bfs(G, len(G), n)
+
+
+def _plain_bfs(G, n, source):
+    """A fast BFS node generator"""
+    adj = G._adj
+    seen = {source}
+    nextlevel = [source]
+    while nextlevel:
+        thislevel = nextlevel
+        nextlevel = []
+        for v in thislevel:
+            for w in adj[v]:
+                if w not in seen:
+                    seen.add(w)
+                    nextlevel.append(w)
+            if len(seen) == n:
+                return seen
+    return seen
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/semiconnected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/semiconnected.py
new file mode 100644
index 00000000..9ca5d762
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/semiconnected.py
@@ -0,0 +1,71 @@
+"""Semiconnectedness."""
+
+import networkx as nx
+from networkx.utils import not_implemented_for, pairwise
+
+__all__ = ["is_semiconnected"]
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def is_semiconnected(G):
+    r"""Returns True if the graph is semiconnected, False otherwise.
+
+    A graph is semiconnected if and only if for any pair of nodes, either one
+    is reachable from the other, or they are mutually reachable.
+
+    This function uses a theorem that states that a DAG is semiconnected
+    if for any topological sort, for node $v_n$ in that sort, there is an
+    edge $(v_i, v_{i+1})$. That allows us to check if a non-DAG `G` is
+    semiconnected by condensing the graph: i.e. constructing a new graph `H`
+    with nodes being the strongly connected components of `G`, and edges
+    (scc_1, scc_2) if there is a edge $(v_1, v_2)$ in `G` for some
+    $v_1 \in scc_1$ and $v_2 \in scc_2$. That results in a DAG, so we compute
+    the topological sort of `H` and check if for every $n$ there is an edge
+    $(scc_n, scc_{n+1})$.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        A directed graph.
+
+    Returns
+    -------
+    semiconnected : bool
+        True if the graph is semiconnected, False otherwise.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the input graph is undirected.
+
+    NetworkXPointlessConcept
+        If the graph is empty.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4, create_using=nx.DiGraph())
+    >>> print(nx.is_semiconnected(G))
+    True
+    >>> G = nx.DiGraph([(1, 2), (3, 2)])
+    >>> print(nx.is_semiconnected(G))
+    False
+
+    See Also
+    --------
+    is_strongly_connected
+    is_weakly_connected
+    is_connected
+    is_biconnected
+    """
+    if len(G) == 0:
+        raise nx.NetworkXPointlessConcept(
+            "Connectivity is undefined for the null graph."
+        )
+
+    if not nx.is_weakly_connected(G):
+        return False
+
+    H = nx.condensation(G)
+
+    return all(H.has_edge(u, v) for u, v in pairwise(nx.topological_sort(H)))
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/strongly_connected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/strongly_connected.py
new file mode 100644
index 00000000..393728ff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/strongly_connected.py
@@ -0,0 +1,351 @@
+"""Strongly connected components."""
+
+import networkx as nx
+from networkx.utils.decorators import not_implemented_for
+
+__all__ = [
+    "number_strongly_connected_components",
+    "strongly_connected_components",
+    "is_strongly_connected",
+    "kosaraju_strongly_connected_components",
+    "condensation",
+]
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def strongly_connected_components(G):
+    """Generate nodes in strongly connected components of graph.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        A directed graph.
+
+    Returns
+    -------
+    comp : generator of sets
+        A generator of sets of nodes, one for each strongly connected
+        component of G.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    Generate a sorted list of strongly connected components, largest first.
+
+    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
+    >>> nx.add_cycle(G, [10, 11, 12])
+    >>> [
+    ...     len(c)
+    ...     for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)
+    ... ]
+    [4, 3]
+
+    If you only want the largest component, it's more efficient to
+    use max instead of sort.
+
+    >>> largest = max(nx.strongly_connected_components(G), key=len)
+
+    See Also
+    --------
+    connected_components
+    weakly_connected_components
+    kosaraju_strongly_connected_components
+
+    Notes
+    -----
+    Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_.
+    Nonrecursive version of algorithm.
+
+    References
+    ----------
+    .. [1] Depth-first search and linear graph algorithms, R. Tarjan
+       SIAM Journal of Computing 1(2):146-160, (1972).
+
+    .. [2] On finding the strongly connected components in a directed graph.
+       E. Nuutila and E. Soisalon-Soinen
+       Information Processing Letters 49(1): 9-14, (1994)..
+
+    """
+    preorder = {}
+    lowlink = {}
+    scc_found = set()
+    scc_queue = []
+    i = 0  # Preorder counter
+    neighbors = {v: iter(G[v]) for v in G}
+    for source in G:
+        if source not in scc_found:
+            queue = [source]
+            while queue:
+                v = queue[-1]
+                if v not in preorder:
+                    i = i + 1
+                    preorder[v] = i
+                done = True
+                for w in neighbors[v]:
+                    if w not in preorder:
+                        queue.append(w)
+                        done = False
+                        break
+                if done:
+                    lowlink[v] = preorder[v]
+                    for w in G[v]:
+                        if w not in scc_found:
+                            if preorder[w] > preorder[v]:
+                                lowlink[v] = min([lowlink[v], lowlink[w]])
+                            else:
+                                lowlink[v] = min([lowlink[v], preorder[w]])
+                    queue.pop()
+                    if lowlink[v] == preorder[v]:
+                        scc = {v}
+                        while scc_queue and preorder[scc_queue[-1]] > preorder[v]:
+                            k = scc_queue.pop()
+                            scc.add(k)
+                        scc_found.update(scc)
+                        yield scc
+                    else:
+                        scc_queue.append(v)
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def kosaraju_strongly_connected_components(G, source=None):
+    """Generate nodes in strongly connected components of graph.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        A directed graph.
+
+    Returns
+    -------
+    comp : generator of sets
+        A generator of sets of nodes, one for each strongly connected
+        component of G.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    Generate a sorted list of strongly connected components, largest first.
+
+    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
+    >>> nx.add_cycle(G, [10, 11, 12])
+    >>> [
+    ...     len(c)
+    ...     for c in sorted(
+    ...         nx.kosaraju_strongly_connected_components(G), key=len, reverse=True
+    ...     )
+    ... ]
+    [4, 3]
+
+    If you only want the largest component, it's more efficient to
+    use max instead of sort.
+
+    >>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)
+
+    See Also
+    --------
+    strongly_connected_components
+
+    Notes
+    -----
+    Uses Kosaraju's algorithm.
+
+    """
+    post = list(nx.dfs_postorder_nodes(G.reverse(copy=False), source=source))
+
+    seen = set()
+    while post:
+        r = post.pop()
+        if r in seen:
+            continue
+        c = nx.dfs_preorder_nodes(G, r)
+        new = {v for v in c if v not in seen}
+        seen.update(new)
+        yield new
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def number_strongly_connected_components(G):
+    """Returns number of strongly connected components in graph.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+       A directed graph.
+
+    Returns
+    -------
+    n : integer
+       Number of strongly connected components
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    >>> G = nx.DiGraph(
+    ...     [(0, 1), (1, 2), (2, 0), (2, 3), (4, 5), (3, 4), (5, 6), (6, 3), (6, 7)]
+    ... )
+    >>> nx.number_strongly_connected_components(G)
+    3
+
+    See Also
+    --------
+    strongly_connected_components
+    number_connected_components
+    number_weakly_connected_components
+
+    Notes
+    -----
+    For directed graphs only.
+    """
+    return sum(1 for scc in strongly_connected_components(G))
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def is_strongly_connected(G):
+    """Test directed graph for strong connectivity.
+
+    A directed graph is strongly connected if and only if every vertex in
+    the graph is reachable from every other vertex.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+       A directed graph.
+
+    Returns
+    -------
+    connected : bool
+      True if the graph is strongly connected, False otherwise.
+
+    Examples
+    --------
+    >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 2)])
+    >>> nx.is_strongly_connected(G)
+    True
+    >>> G.remove_edge(2, 3)
+    >>> nx.is_strongly_connected(G)
+    False
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    See Also
+    --------
+    is_weakly_connected
+    is_semiconnected
+    is_connected
+    is_biconnected
+    strongly_connected_components
+
+    Notes
+    -----
+    For directed graphs only.
+    """
+    if len(G) == 0:
+        raise nx.NetworkXPointlessConcept(
+            """Connectivity is undefined for the null graph."""
+        )
+
+    return len(next(strongly_connected_components(G))) == len(G)
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable(returns_graph=True)
+def condensation(G, scc=None):
+    """Returns the condensation of G.
+
+    The condensation of G is the graph with each of the strongly connected
+    components contracted into a single node.
+
+    Parameters
+    ----------
+    G : NetworkX DiGraph
+       A directed graph.
+
+    scc:  list or generator (optional, default=None)
+       Strongly connected components. If provided, the elements in
+       `scc` must partition the nodes in `G`. If not provided, it will be
+       calculated as scc=nx.strongly_connected_components(G).
+
+    Returns
+    -------
+    C : NetworkX DiGraph
+       The condensation graph C of G.  The node labels are integers
+       corresponding to the index of the component in the list of
+       strongly connected components of G.  C has a graph attribute named
+       'mapping' with a dictionary mapping the original nodes to the
+       nodes in C to which they belong.  Each node in C also has a node
+       attribute 'members' with the set of original nodes in G that
+       form the SCC that the node in C represents.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    Contracting two sets of strongly connected nodes into two distinct SCC
+    using the barbell graph.
+
+    >>> G = nx.barbell_graph(4, 0)
+    >>> G.remove_edge(3, 4)
+    >>> G = nx.DiGraph(G)
+    >>> H = nx.condensation(G)
+    >>> H.nodes.data()
+    NodeDataView({0: {'members': {0, 1, 2, 3}}, 1: {'members': {4, 5, 6, 7}}})
+    >>> H.graph["mapping"]
+    {0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1}
+
+    Contracting a complete graph into one single SCC.
+
+    >>> G = nx.complete_graph(7, create_using=nx.DiGraph)
+    >>> H = nx.condensation(G)
+    >>> H.nodes
+    NodeView((0,))
+    >>> H.nodes.data()
+    NodeDataView({0: {'members': {0, 1, 2, 3, 4, 5, 6}}})
+
+    Notes
+    -----
+    After contracting all strongly connected components to a single node,
+    the resulting graph is a directed acyclic graph.
+
+    """
+    if scc is None:
+        scc = nx.strongly_connected_components(G)
+    mapping = {}
+    members = {}
+    C = nx.DiGraph()
+    # Add mapping dict as graph attribute
+    C.graph["mapping"] = mapping
+    if len(G) == 0:
+        return C
+    for i, component in enumerate(scc):
+        members[i] = component
+        mapping.update((n, i) for n in component)
+    number_of_components = i + 1
+    C.add_nodes_from(range(number_of_components))
+    C.add_edges_from(
+        (mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v]
+    )
+    # Add a list of members (ie original nodes) to each node (ie scc) in C.
+    nx.set_node_attributes(C, members, "members")
+    return C
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_attracting.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_attracting.py
new file mode 100644
index 00000000..336c40dd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_attracting.py
@@ -0,0 +1,70 @@
+import pytest
+
+import networkx as nx
+from networkx import NetworkXNotImplemented
+
+
+class TestAttractingComponents:
+    @classmethod
+    def setup_class(cls):
+        cls.G1 = nx.DiGraph()
+        cls.G1.add_edges_from(
+            [
+                (5, 11),
+                (11, 2),
+                (11, 9),
+                (11, 10),
+                (7, 11),
+                (7, 8),
+                (8, 9),
+                (3, 8),
+                (3, 10),
+            ]
+        )
+        cls.G2 = nx.DiGraph()
+        cls.G2.add_edges_from([(0, 1), (0, 2), (1, 1), (1, 2), (2, 1)])
+
+        cls.G3 = nx.DiGraph()
+        cls.G3.add_edges_from([(0, 1), (1, 2), (2, 1), (0, 3), (3, 4), (4, 3)])
+
+        cls.G4 = nx.DiGraph()
+
+    def test_attracting_components(self):
+        ac = list(nx.attracting_components(self.G1))
+        assert {2} in ac
+        assert {9} in ac
+        assert {10} in ac
+
+        ac = list(nx.attracting_components(self.G2))
+        ac = [tuple(sorted(x)) for x in ac]
+        assert ac == [(1, 2)]
+
+        ac = list(nx.attracting_components(self.G3))
+        ac = [tuple(sorted(x)) for x in ac]
+        assert (1, 2) in ac
+        assert (3, 4) in ac
+        assert len(ac) == 2
+
+        ac = list(nx.attracting_components(self.G4))
+        assert ac == []
+
+    def test_number_attacting_components(self):
+        assert nx.number_attracting_components(self.G1) == 3
+        assert nx.number_attracting_components(self.G2) == 1
+        assert nx.number_attracting_components(self.G3) == 2
+        assert nx.number_attracting_components(self.G4) == 0
+
+    def test_is_attracting_component(self):
+        assert not nx.is_attracting_component(self.G1)
+        assert not nx.is_attracting_component(self.G2)
+        assert not nx.is_attracting_component(self.G3)
+        g2 = self.G3.subgraph([1, 2])
+        assert nx.is_attracting_component(g2)
+        assert not nx.is_attracting_component(self.G4)
+
+    def test_connected_raise(self):
+        G = nx.Graph()
+        with pytest.raises(NetworkXNotImplemented):
+            next(nx.attracting_components(G))
+        pytest.raises(NetworkXNotImplemented, nx.number_attracting_components, G)
+        pytest.raises(NetworkXNotImplemented, nx.is_attracting_component, G)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_biconnected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_biconnected.py
new file mode 100644
index 00000000..19d2d883
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_biconnected.py
@@ -0,0 +1,248 @@
+import pytest
+
+import networkx as nx
+from networkx import NetworkXNotImplemented
+
+
+def assert_components_edges_equal(x, y):
+    sx = {frozenset(frozenset(e) for e in c) for c in x}
+    sy = {frozenset(frozenset(e) for e in c) for c in y}
+    assert sx == sy
+
+
+def assert_components_equal(x, y):
+    sx = {frozenset(c) for c in x}
+    sy = {frozenset(c) for c in y}
+    assert sx == sy
+
+
+def test_barbell():
+    G = nx.barbell_graph(8, 4)
+    nx.add_path(G, [7, 20, 21, 22])
+    nx.add_cycle(G, [22, 23, 24, 25])
+    pts = set(nx.articulation_points(G))
+    assert pts == {7, 8, 9, 10, 11, 12, 20, 21, 22}
+
+    answer = [
+        {12, 13, 14, 15, 16, 17, 18, 19},
+        {0, 1, 2, 3, 4, 5, 6, 7},
+        {22, 23, 24, 25},
+        {11, 12},
+        {10, 11},
+        {9, 10},
+        {8, 9},
+        {7, 8},
+        {21, 22},
+        {20, 21},
+        {7, 20},
+    ]
+    assert_components_equal(list(nx.biconnected_components(G)), answer)
+
+    G.add_edge(2, 17)
+    pts = set(nx.articulation_points(G))
+    assert pts == {7, 20, 21, 22}
+
+
+def test_articulation_points_repetitions():
+    G = nx.Graph()
+    G.add_edges_from([(0, 1), (1, 2), (1, 3)])
+    assert list(nx.articulation_points(G)) == [1]
+
+
+def test_articulation_points_cycle():
+    G = nx.cycle_graph(3)
+    nx.add_cycle(G, [1, 3, 4])
+    pts = set(nx.articulation_points(G))
+    assert pts == {1}
+
+
+def test_is_biconnected():
+    G = nx.cycle_graph(3)
+    assert nx.is_biconnected(G)
+    nx.add_cycle(G, [1, 3, 4])
+    assert not nx.is_biconnected(G)
+
+
+def test_empty_is_biconnected():
+    G = nx.empty_graph(5)
+    assert not nx.is_biconnected(G)
+    G.add_edge(0, 1)
+    assert not nx.is_biconnected(G)
+
+
+def test_biconnected_components_cycle():
+    G = nx.cycle_graph(3)
+    nx.add_cycle(G, [1, 3, 4])
+    answer = [{0, 1, 2}, {1, 3, 4}]
+    assert_components_equal(list(nx.biconnected_components(G)), answer)
+
+
+def test_biconnected_components1():
+    # graph example from
+    # https://web.archive.org/web/20121229123447/http://www.ibluemojo.com/school/articul_algorithm.html
+    edges = [
+        (0, 1),
+        (0, 5),
+        (0, 6),
+        (0, 14),
+        (1, 5),
+        (1, 6),
+        (1, 14),
+        (2, 4),
+        (2, 10),
+        (3, 4),
+        (3, 15),
+        (4, 6),
+        (4, 7),
+        (4, 10),
+        (5, 14),
+        (6, 14),
+        (7, 9),
+        (8, 9),
+        (8, 12),
+        (8, 13),
+        (10, 15),
+        (11, 12),
+        (11, 13),
+        (12, 13),
+    ]
+    G = nx.Graph(edges)
+    pts = set(nx.articulation_points(G))
+    assert pts == {4, 6, 7, 8, 9}
+    comps = list(nx.biconnected_component_edges(G))
+    answer = [
+        [(3, 4), (15, 3), (10, 15), (10, 4), (2, 10), (4, 2)],
+        [(13, 12), (13, 8), (11, 13), (12, 11), (8, 12)],
+        [(9, 8)],
+        [(7, 9)],
+        [(4, 7)],
+        [(6, 4)],
+        [(14, 0), (5, 1), (5, 0), (14, 5), (14, 1), (6, 14), (6, 0), (1, 6), (0, 1)],
+    ]
+    assert_components_edges_equal(comps, answer)
+
+
+def test_biconnected_components2():
+    G = nx.Graph()
+    nx.add_cycle(G, "ABC")
+    nx.add_cycle(G, "CDE")
+    nx.add_cycle(G, "FIJHG")
+    nx.add_cycle(G, "GIJ")
+    G.add_edge("E", "G")
+    comps = list(nx.biconnected_component_edges(G))
+    answer = [
+        [
+            tuple("GF"),
+            tuple("FI"),
+            tuple("IG"),
+            tuple("IJ"),
+            tuple("JG"),
+            tuple("JH"),
+            tuple("HG"),
+        ],
+        [tuple("EG")],
+        [tuple("CD"), tuple("DE"), tuple("CE")],
+        [tuple("AB"), tuple("BC"), tuple("AC")],
+    ]
+    assert_components_edges_equal(comps, answer)
+
+
+def test_biconnected_davis():
+    D = nx.davis_southern_women_graph()
+    bcc = list(nx.biconnected_components(D))[0]
+    assert set(D) == bcc  # All nodes in a giant bicomponent
+    # So no articulation points
+    assert len(list(nx.articulation_points(D))) == 0
+
+
+def test_biconnected_karate():
+    K = nx.karate_club_graph()
+    answer = [
+        {
+            0,
+            1,
+            2,
+            3,
+            7,
+            8,
+            9,
+            12,
+            13,
+            14,
+            15,
+            17,
+            18,
+            19,
+            20,
+            21,
+            22,
+            23,
+            24,
+            25,
+            26,
+            27,
+            28,
+            29,
+            30,
+            31,
+            32,
+            33,
+        },
+        {0, 4, 5, 6, 10, 16},
+        {0, 11},
+    ]
+    bcc = list(nx.biconnected_components(K))
+    assert_components_equal(bcc, answer)
+    assert set(nx.articulation_points(K)) == {0}
+
+
+def test_biconnected_eppstein():
+    # tests from http://www.ics.uci.edu/~eppstein/PADS/Biconnectivity.py
+    G1 = nx.Graph(
+        {
+            0: [1, 2, 5],
+            1: [0, 5],
+            2: [0, 3, 4],
+            3: [2, 4, 5, 6],
+            4: [2, 3, 5, 6],
+            5: [0, 1, 3, 4],
+            6: [3, 4],
+        }
+    )
+    G2 = nx.Graph(
+        {
+            0: [2, 5],
+            1: [3, 8],
+            2: [0, 3, 5],
+            3: [1, 2, 6, 8],
+            4: [7],
+            5: [0, 2],
+            6: [3, 8],
+            7: [4],
+            8: [1, 3, 6],
+        }
+    )
+    assert nx.is_biconnected(G1)
+    assert not nx.is_biconnected(G2)
+    answer_G2 = [{1, 3, 6, 8}, {0, 2, 5}, {2, 3}, {4, 7}]
+    bcc = list(nx.biconnected_components(G2))
+    assert_components_equal(bcc, answer_G2)
+
+
+def test_null_graph():
+    G = nx.Graph()
+    assert not nx.is_biconnected(G)
+    assert list(nx.biconnected_components(G)) == []
+    assert list(nx.biconnected_component_edges(G)) == []
+    assert list(nx.articulation_points(G)) == []
+
+
+def test_connected_raise():
+    DG = nx.DiGraph()
+    with pytest.raises(NetworkXNotImplemented):
+        next(nx.biconnected_components(DG))
+    with pytest.raises(NetworkXNotImplemented):
+        next(nx.biconnected_component_edges(DG))
+    with pytest.raises(NetworkXNotImplemented):
+        next(nx.articulation_points(DG))
+    pytest.raises(NetworkXNotImplemented, nx.is_biconnected, DG)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_connected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_connected.py
new file mode 100644
index 00000000..207214c1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_connected.py
@@ -0,0 +1,138 @@
+import pytest
+
+import networkx as nx
+from networkx import NetworkXNotImplemented
+from networkx import convert_node_labels_to_integers as cnlti
+from networkx.classes.tests import dispatch_interface
+
+
+class TestConnected:
+    @classmethod
+    def setup_class(cls):
+        G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted")
+        G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted")
+        G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted")
+        cls.G = nx.union(G1, G2)
+        cls.G = nx.union(cls.G, G3)
+        cls.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
+        cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1)
+
+        cls.gc = []
+        G = nx.DiGraph()
+        G.add_edges_from(
+            [
+                (1, 2),
+                (2, 3),
+                (2, 8),
+                (3, 4),
+                (3, 7),
+                (4, 5),
+                (5, 3),
+                (5, 6),
+                (7, 4),
+                (7, 6),
+                (8, 1),
+                (8, 7),
+            ]
+        )
+        C = [[3, 4, 5, 7], [1, 2, 8], [6]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
+        C = [[2, 3, 4], [1]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
+        C = [[1, 2, 3]]
+        cls.gc.append((G, C))
+
+        # Eppstein's tests
+        G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
+        C = [[0], [1], [2], [3], [4], [5], [6]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
+        C = [[0, 1, 2], [3, 4]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        C = []
+        cls.gc.append((G, C))
+
+    def test_connected_components(self):
+        # Test duplicated below
+        cc = nx.connected_components
+        G = self.G
+        C = {
+            frozenset([0, 1, 2, 3]),
+            frozenset([4, 5, 6, 7, 8, 9]),
+            frozenset([10, 11, 12, 13, 14]),
+        }
+        assert {frozenset(g) for g in cc(G)} == C
+
+    def test_connected_components_nx_loopback(self):
+        # This tests the @nx._dispatchable mechanism, treating nx.connected_components
+        # as if it were a re-implementation from another package.
+        # Test duplicated from above
+        cc = nx.connected_components
+        G = dispatch_interface.convert(self.G)
+        C = {
+            frozenset([0, 1, 2, 3]),
+            frozenset([4, 5, 6, 7, 8, 9]),
+            frozenset([10, 11, 12, 13, 14]),
+        }
+        if "nx_loopback" in nx.config.backends or not nx.config.backends:
+            # If `nx.config.backends` is empty, then `_dispatchable.__call__` takes a
+            # "fast path" and does not check graph inputs, so using an unknown backend
+            # here will still work.
+            assert {frozenset(g) for g in cc(G)} == C
+        else:
+            # This raises, because "nx_loopback" is not registered as a backend.
+            with pytest.raises(
+                ImportError, match="'nx_loopback' backend is not installed"
+            ):
+                cc(G)
+
+    def test_number_connected_components(self):
+        ncc = nx.number_connected_components
+        assert ncc(self.G) == 3
+
+    def test_number_connected_components2(self):
+        ncc = nx.number_connected_components
+        assert ncc(self.grid) == 1
+
+    def test_connected_components2(self):
+        cc = nx.connected_components
+        G = self.grid
+        C = {frozenset([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])}
+        assert {frozenset(g) for g in cc(G)} == C
+
+    def test_node_connected_components(self):
+        ncc = nx.node_connected_component
+        G = self.grid
+        C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
+        assert ncc(G, 1) == C
+
+    def test_is_connected(self):
+        assert nx.is_connected(self.grid)
+        G = nx.Graph()
+        G.add_nodes_from([1, 2])
+        assert not nx.is_connected(G)
+
+    def test_connected_raise(self):
+        with pytest.raises(NetworkXNotImplemented):
+            next(nx.connected_components(self.DG))
+        pytest.raises(NetworkXNotImplemented, nx.number_connected_components, self.DG)
+        pytest.raises(NetworkXNotImplemented, nx.node_connected_component, self.DG, 1)
+        pytest.raises(NetworkXNotImplemented, nx.is_connected, self.DG)
+        pytest.raises(nx.NetworkXPointlessConcept, nx.is_connected, nx.Graph())
+
+    def test_connected_mutability(self):
+        G = self.grid
+        seen = set()
+        for component in nx.connected_components(G):
+            assert len(seen & component) == 0
+            seen.update(component)
+            component.clear()
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_semiconnected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_semiconnected.py
new file mode 100644
index 00000000..6376bbfb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_semiconnected.py
@@ -0,0 +1,55 @@
+from itertools import chain
+
+import pytest
+
+import networkx as nx
+
+
+class TestIsSemiconnected:
+    def test_undirected(self):
+        pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.Graph())
+        pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.MultiGraph())
+
+    def test_empty(self):
+        pytest.raises(nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.DiGraph())
+        pytest.raises(
+            nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.MultiDiGraph()
+        )
+
+    def test_single_node_graph(self):
+        G = nx.DiGraph()
+        G.add_node(0)
+        assert nx.is_semiconnected(G)
+
+    def test_path(self):
+        G = nx.path_graph(100, create_using=nx.DiGraph())
+        assert nx.is_semiconnected(G)
+        G.add_edge(100, 99)
+        assert not nx.is_semiconnected(G)
+
+    def test_cycle(self):
+        G = nx.cycle_graph(100, create_using=nx.DiGraph())
+        assert nx.is_semiconnected(G)
+        G = nx.path_graph(100, create_using=nx.DiGraph())
+        G.add_edge(0, 99)
+        assert nx.is_semiconnected(G)
+
+    def test_tree(self):
+        G = nx.DiGraph()
+        G.add_edges_from(
+            chain.from_iterable([(i, 2 * i + 1), (i, 2 * i + 2)] for i in range(100))
+        )
+        assert not nx.is_semiconnected(G)
+
+    def test_dumbbell(self):
+        G = nx.cycle_graph(100, create_using=nx.DiGraph())
+        G.add_edges_from((i + 100, (i + 1) % 100 + 100) for i in range(100))
+        assert not nx.is_semiconnected(G)  # G is disconnected.
+        G.add_edge(100, 99)
+        assert nx.is_semiconnected(G)
+
+    def test_alternating_path(self):
+        G = nx.DiGraph(
+            chain.from_iterable([(i, i - 1), (i, i + 1)] for i in range(0, 100, 2))
+        )
+        assert not nx.is_semiconnected(G)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py
new file mode 100644
index 00000000..27f40988
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py
@@ -0,0 +1,193 @@
+import pytest
+
+import networkx as nx
+from networkx import NetworkXNotImplemented
+
+
+class TestStronglyConnected:
+    @classmethod
+    def setup_class(cls):
+        cls.gc = []
+        G = nx.DiGraph()
+        G.add_edges_from(
+            [
+                (1, 2),
+                (2, 3),
+                (2, 8),
+                (3, 4),
+                (3, 7),
+                (4, 5),
+                (5, 3),
+                (5, 6),
+                (7, 4),
+                (7, 6),
+                (8, 1),
+                (8, 7),
+            ]
+        )
+        C = {frozenset([3, 4, 5, 7]), frozenset([1, 2, 8]), frozenset([6])}
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
+        C = {frozenset([2, 3, 4]), frozenset([1])}
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
+        C = {frozenset([1, 2, 3])}
+        cls.gc.append((G, C))
+
+        # Eppstein's tests
+        G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
+        C = {
+            frozenset([0]),
+            frozenset([1]),
+            frozenset([2]),
+            frozenset([3]),
+            frozenset([4]),
+            frozenset([5]),
+            frozenset([6]),
+        }
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
+        C = {frozenset([0, 1, 2]), frozenset([3, 4])}
+        cls.gc.append((G, C))
+
+    def test_tarjan(self):
+        scc = nx.strongly_connected_components
+        for G, C in self.gc:
+            assert {frozenset(g) for g in scc(G)} == C
+
+    def test_kosaraju(self):
+        scc = nx.kosaraju_strongly_connected_components
+        for G, C in self.gc:
+            assert {frozenset(g) for g in scc(G)} == C
+
+    def test_number_strongly_connected_components(self):
+        ncc = nx.number_strongly_connected_components
+        for G, C in self.gc:
+            assert ncc(G) == len(C)
+
+    def test_is_strongly_connected(self):
+        for G, C in self.gc:
+            if len(C) == 1:
+                assert nx.is_strongly_connected(G)
+            else:
+                assert not nx.is_strongly_connected(G)
+
+    def test_contract_scc1(self):
+        G = nx.DiGraph()
+        G.add_edges_from(
+            [
+                (1, 2),
+                (2, 3),
+                (2, 11),
+                (2, 12),
+                (3, 4),
+                (4, 3),
+                (4, 5),
+                (5, 6),
+                (6, 5),
+                (6, 7),
+                (7, 8),
+                (7, 9),
+                (7, 10),
+                (8, 9),
+                (9, 7),
+                (10, 6),
+                (11, 2),
+                (11, 4),
+                (11, 6),
+                (12, 6),
+                (12, 11),
+            ]
+        )
+        scc = list(nx.strongly_connected_components(G))
+        cG = nx.condensation(G, scc)
+        # DAG
+        assert nx.is_directed_acyclic_graph(cG)
+        # nodes
+        assert sorted(cG.nodes()) == [0, 1, 2, 3]
+        # edges
+        mapping = {}
+        for i, component in enumerate(scc):
+            for n in component:
+                mapping[n] = i
+        edge = (mapping[2], mapping[3])
+        assert cG.has_edge(*edge)
+        edge = (mapping[2], mapping[5])
+        assert cG.has_edge(*edge)
+        edge = (mapping[3], mapping[5])
+        assert cG.has_edge(*edge)
+
+    def test_contract_scc_isolate(self):
+        # Bug found and fixed in [1687].
+        G = nx.DiGraph()
+        G.add_edge(1, 2)
+        G.add_edge(2, 1)
+        scc = list(nx.strongly_connected_components(G))
+        cG = nx.condensation(G, scc)
+        assert list(cG.nodes()) == [0]
+        assert list(cG.edges()) == []
+
+    def test_contract_scc_edge(self):
+        G = nx.DiGraph()
+        G.add_edge(1, 2)
+        G.add_edge(2, 1)
+        G.add_edge(2, 3)
+        G.add_edge(3, 4)
+        G.add_edge(4, 3)
+        scc = list(nx.strongly_connected_components(G))
+        cG = nx.condensation(G, scc)
+        assert sorted(cG.nodes()) == [0, 1]
+        if 1 in scc[0]:
+            edge = (0, 1)
+        else:
+            edge = (1, 0)
+        assert list(cG.edges()) == [edge]
+
+    def test_condensation_mapping_and_members(self):
+        G, C = self.gc[1]
+        C = sorted(C, key=len, reverse=True)
+        cG = nx.condensation(G)
+        mapping = cG.graph["mapping"]
+        assert all(n in G for n in mapping)
+        assert all(0 == cN for n, cN in mapping.items() if n in C[0])
+        assert all(1 == cN for n, cN in mapping.items() if n in C[1])
+        for n, d in cG.nodes(data=True):
+            assert set(C[n]) == cG.nodes[n]["members"]
+
+    def test_null_graph(self):
+        G = nx.DiGraph()
+        assert list(nx.strongly_connected_components(G)) == []
+        assert list(nx.kosaraju_strongly_connected_components(G)) == []
+        assert len(nx.condensation(G)) == 0
+        pytest.raises(
+            nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph()
+        )
+
+    def test_connected_raise(self):
+        G = nx.Graph()
+        with pytest.raises(NetworkXNotImplemented):
+            next(nx.strongly_connected_components(G))
+        with pytest.raises(NetworkXNotImplemented):
+            next(nx.kosaraju_strongly_connected_components(G))
+        pytest.raises(NetworkXNotImplemented, nx.is_strongly_connected, G)
+        pytest.raises(NetworkXNotImplemented, nx.condensation, G)
+
+    strong_cc_methods = (
+        nx.strongly_connected_components,
+        nx.kosaraju_strongly_connected_components,
+    )
+
+    @pytest.mark.parametrize("get_components", strong_cc_methods)
+    def test_connected_mutability(self, get_components):
+        DG = nx.path_graph(5, create_using=nx.DiGraph)
+        G = nx.disjoint_union(DG, DG)
+        seen = set()
+        for component in get_components(G):
+            assert len(seen & component) == 0
+            seen.update(component)
+            component.clear()
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py
new file mode 100644
index 00000000..f0144789
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py
@@ -0,0 +1,96 @@
+import pytest
+
+import networkx as nx
+from networkx import NetworkXNotImplemented
+
+
+class TestWeaklyConnected:
+    @classmethod
+    def setup_class(cls):
+        cls.gc = []
+        G = nx.DiGraph()
+        G.add_edges_from(
+            [
+                (1, 2),
+                (2, 3),
+                (2, 8),
+                (3, 4),
+                (3, 7),
+                (4, 5),
+                (5, 3),
+                (5, 6),
+                (7, 4),
+                (7, 6),
+                (8, 1),
+                (8, 7),
+            ]
+        )
+        C = [[3, 4, 5, 7], [1, 2, 8], [6]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
+        C = [[2, 3, 4], [1]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph()
+        G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
+        C = [[1, 2, 3]]
+        cls.gc.append((G, C))
+
+        # Eppstein's tests
+        G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
+        C = [[0], [1], [2], [3], [4], [5], [6]]
+        cls.gc.append((G, C))
+
+        G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
+        C = [[0, 1, 2], [3, 4]]
+        cls.gc.append((G, C))
+
+    def test_weakly_connected_components(self):
+        for G, C in self.gc:
+            U = G.to_undirected()
+            w = {frozenset(g) for g in nx.weakly_connected_components(G)}
+            c = {frozenset(g) for g in nx.connected_components(U)}
+            assert w == c
+
+    def test_number_weakly_connected_components(self):
+        for G, C in self.gc:
+            U = G.to_undirected()
+            w = nx.number_weakly_connected_components(G)
+            c = nx.number_connected_components(U)
+            assert w == c
+
+    def test_is_weakly_connected(self):
+        for G, C in self.gc:
+            U = G.to_undirected()
+            assert nx.is_weakly_connected(G) == nx.is_connected(U)
+
+    def test_null_graph(self):
+        G = nx.DiGraph()
+        assert list(nx.weakly_connected_components(G)) == []
+        assert nx.number_weakly_connected_components(G) == 0
+        with pytest.raises(nx.NetworkXPointlessConcept):
+            next(nx.is_weakly_connected(G))
+
+    def test_connected_raise(self):
+        G = nx.Graph()
+        with pytest.raises(NetworkXNotImplemented):
+            next(nx.weakly_connected_components(G))
+        pytest.raises(NetworkXNotImplemented, nx.number_weakly_connected_components, G)
+        pytest.raises(NetworkXNotImplemented, nx.is_weakly_connected, G)
+
+    def test_connected_mutability(self):
+        DG = nx.path_graph(5, create_using=nx.DiGraph)
+        G = nx.disjoint_union(DG, DG)
+        seen = set()
+        for component in nx.weakly_connected_components(G):
+            assert len(seen & component) == 0
+            seen.update(component)
+            component.clear()
+
+
+def test_is_weakly_connected_empty_graph_raises():
+    G = nx.DiGraph()
+    with pytest.raises(nx.NetworkXPointlessConcept, match="Connectivity is undefined"):
+        nx.is_weakly_connected(G)
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/components/weakly_connected.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/weakly_connected.py
new file mode 100644
index 00000000..ecfac50a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/components/weakly_connected.py
@@ -0,0 +1,197 @@
+"""Weakly connected components."""
+
+import networkx as nx
+from networkx.utils.decorators import not_implemented_for
+
+__all__ = [
+    "number_weakly_connected_components",
+    "weakly_connected_components",
+    "is_weakly_connected",
+]
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def weakly_connected_components(G):
+    """Generate weakly connected components of G.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        A directed graph
+
+    Returns
+    -------
+    comp : generator of sets
+        A generator of sets of nodes, one for each weakly connected
+        component of G.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    Generate a sorted list of weakly connected components, largest first.
+
+    >>> G = nx.path_graph(4, create_using=nx.DiGraph())
+    >>> nx.add_path(G, [10, 11, 12])
+    >>> [
+    ...     len(c)
+    ...     for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)
+    ... ]
+    [4, 3]
+
+    If you only want the largest component, it's more efficient to
+    use max instead of sort:
+
+    >>> largest_cc = max(nx.weakly_connected_components(G), key=len)
+
+    See Also
+    --------
+    connected_components
+    strongly_connected_components
+
+    Notes
+    -----
+    For directed graphs only.
+
+    """
+    seen = set()
+    n = len(G)  # must be outside the loop to avoid performance hit with graph views
+    for v in G:
+        if v not in seen:
+            c = set(_plain_bfs(G, n, v))
+            seen.update(c)
+            yield c
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def number_weakly_connected_components(G):
+    """Returns the number of weakly connected components in G.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        A directed graph.
+
+    Returns
+    -------
+    n : integer
+        Number of weakly connected components
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    >>> G = nx.DiGraph([(0, 1), (2, 1), (3, 4)])
+    >>> nx.number_weakly_connected_components(G)
+    2
+
+    See Also
+    --------
+    weakly_connected_components
+    number_connected_components
+    number_strongly_connected_components
+
+    Notes
+    -----
+    For directed graphs only.
+
+    """
+    return sum(1 for wcc in weakly_connected_components(G))
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable
+def is_weakly_connected(G):
+    """Test directed graph for weak connectivity.
+
+    A directed graph is weakly connected if and only if the graph
+    is connected when the direction of the edge between nodes is ignored.
+
+    Note that if a graph is strongly connected (i.e. the graph is connected
+    even when we account for directionality), it is by definition weakly
+    connected as well.
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        A directed graph.
+
+    Returns
+    -------
+    connected : bool
+        True if the graph is weakly connected, False otherwise.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If G is undirected.
+
+    Examples
+    --------
+    >>> G = nx.DiGraph([(0, 1), (2, 1)])
+    >>> G.add_node(3)
+    >>> nx.is_weakly_connected(G)  # node 3 is not connected to the graph
+    False
+    >>> G.add_edge(2, 3)
+    >>> nx.is_weakly_connected(G)
+    True
+
+    See Also
+    --------
+    is_strongly_connected
+    is_semiconnected
+    is_connected
+    is_biconnected
+    weakly_connected_components
+
+    Notes
+    -----
+    For directed graphs only.
+
+    """
+    if len(G) == 0:
+        raise nx.NetworkXPointlessConcept(
+            """Connectivity is undefined for the null graph."""
+        )
+
+    return len(next(weakly_connected_components(G))) == len(G)
+
+
+def _plain_bfs(G, n, source):
+    """A fast BFS node generator
+
+    The direction of the edge between nodes is ignored.
+
+    For directed graphs only.
+
+    """
+    Gsucc = G._succ
+    Gpred = G._pred
+    seen = {source}
+    nextlevel = [source]
+
+    yield source
+    while nextlevel:
+        thislevel = nextlevel
+        nextlevel = []
+        for v in thislevel:
+            for w in Gsucc[v]:
+                if w not in seen:
+                    seen.add(w)
+                    nextlevel.append(w)
+                    yield w
+            for w in Gpred[v]:
+                if w not in seen:
+                    seen.add(w)
+                    nextlevel.append(w)
+                    yield w
+            if len(seen) == n:
+                return