about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py163
1 files changed, 163 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py
new file mode 100644
index 00000000..9e461ced
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py
@@ -0,0 +1,163 @@
+"""Trophic levels"""
+
+import networkx as nx
+from networkx.utils import not_implemented_for
+
+__all__ = ["trophic_levels", "trophic_differences", "trophic_incoherence_parameter"]
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable(edge_attrs="weight")
+def trophic_levels(G, weight="weight"):
+    r"""Compute the trophic levels of nodes.
+
+    The trophic level of a node $i$ is
+
+    .. math::
+
+        s_i = 1 + \frac{1}{k^{in}_i} \sum_{j} a_{ij} s_j
+
+    where $k^{in}_i$ is the in-degree of i
+
+    .. math::
+
+        k^{in}_i = \sum_{j} a_{ij}
+
+    and nodes with $k^{in}_i = 0$ have $s_i = 1$ by convention.
+
+    These are calculated using the method outlined in Levine [1]_.
+
+    Parameters
+    ----------
+    G : DiGraph
+        A directed networkx graph
+
+    Returns
+    -------
+    nodes : dict
+        Dictionary of nodes with trophic level as the value.
+
+    References
+    ----------
+    .. [1] Stephen Levine (1980) J. theor. Biol. 83, 195-207
+    """
+    import numpy as np
+
+    # find adjacency matrix
+    a = nx.adjacency_matrix(G, weight=weight).T.toarray()
+
+    # drop rows/columns where in-degree is zero
+    rowsum = np.sum(a, axis=1)
+    p = a[rowsum != 0][:, rowsum != 0]
+    # normalise so sum of in-degree weights is 1 along each row
+    p = p / rowsum[rowsum != 0][:, np.newaxis]
+
+    # calculate trophic levels
+    nn = p.shape[0]
+    i = np.eye(nn)
+    try:
+        n = np.linalg.inv(i - p)
+    except np.linalg.LinAlgError as err:
+        # LinAlgError is raised when there is a non-basal node
+        msg = (
+            "Trophic levels are only defined for graphs where every "
+            + "node has a path from a basal node (basal nodes are nodes "
+            + "with no incoming edges)."
+        )
+        raise nx.NetworkXError(msg) from err
+    y = n.sum(axis=1) + 1
+
+    levels = {}
+
+    # all nodes with in-degree zero have trophic level == 1
+    zero_node_ids = (node_id for node_id, degree in G.in_degree if degree == 0)
+    for node_id in zero_node_ids:
+        levels[node_id] = 1
+
+    # all other nodes have levels as calculated
+    nonzero_node_ids = (node_id for node_id, degree in G.in_degree if degree != 0)
+    for i, node_id in enumerate(nonzero_node_ids):
+        levels[node_id] = y.item(i)
+
+    return levels
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable(edge_attrs="weight")
+def trophic_differences(G, weight="weight"):
+    r"""Compute the trophic differences of the edges of a directed graph.
+
+    The trophic difference $x_ij$ for each edge is defined in Johnson et al.
+    [1]_ as:
+
+    .. math::
+        x_ij = s_j - s_i
+
+    Where $s_i$ is the trophic level of node $i$.
+
+    Parameters
+    ----------
+    G : DiGraph
+        A directed networkx graph
+
+    Returns
+    -------
+    diffs : dict
+        Dictionary of edges with trophic differences as the value.
+
+    References
+    ----------
+    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
+        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
+    """
+    levels = trophic_levels(G, weight=weight)
+    diffs = {}
+    for u, v in G.edges:
+        diffs[(u, v)] = levels[v] - levels[u]
+    return diffs
+
+
+@not_implemented_for("undirected")
+@nx._dispatchable(edge_attrs="weight")
+def trophic_incoherence_parameter(G, weight="weight", cannibalism=False):
+    r"""Compute the trophic incoherence parameter of a graph.
+
+    Trophic coherence is defined as the homogeneity of the distribution of
+    trophic distances: the more similar, the more coherent. This is measured by
+    the standard deviation of the trophic differences and referred to as the
+    trophic incoherence parameter $q$ by [1].
+
+    Parameters
+    ----------
+    G : DiGraph
+        A directed networkx graph
+
+    cannibalism: Boolean
+        If set to False, self edges are not considered in the calculation
+
+    Returns
+    -------
+    trophic_incoherence_parameter : float
+        The trophic coherence of a graph
+
+    References
+    ----------
+    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
+        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
+    """
+    import numpy as np
+
+    if cannibalism:
+        diffs = trophic_differences(G, weight=weight)
+    else:
+        # If no cannibalism, remove self-edges
+        self_loops = list(nx.selfloop_edges(G))
+        if self_loops:
+            # Make a copy so we do not change G's edges in memory
+            G_2 = G.copy()
+            G_2.remove_edges_from(self_loops)
+        else:
+            # Avoid copy otherwise
+            G_2 = G
+        diffs = trophic_differences(G_2, weight=weight)
+    return float(np.std(list(diffs.values())))