diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/tests/test_trophic.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/tests/test_trophic.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/centrality/tests/test_trophic.py | 302 |
1 files changed, 302 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/tests/test_trophic.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/tests/test_trophic.py new file mode 100644 index 00000000..e6880d52 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/tests/test_trophic.py @@ -0,0 +1,302 @@ +"""Test trophic levels, trophic differences and trophic coherence""" + +import pytest + +np = pytest.importorskip("numpy") +pytest.importorskip("scipy") + +import networkx as nx + + +def test_trophic_levels(): + """Trivial example""" + G = nx.DiGraph() + G.add_edge("a", "b") + G.add_edge("b", "c") + + d = nx.trophic_levels(G) + assert d == {"a": 1, "b": 2, "c": 3} + + +def test_trophic_levels_levine(): + """Example from Figure 5 in Stephen Levine (1980) J. theor. Biol. 83, + 195-207 + """ + S = nx.DiGraph() + S.add_edge(1, 2, weight=1.0) + S.add_edge(1, 3, weight=0.2) + S.add_edge(1, 4, weight=0.8) + S.add_edge(2, 3, weight=0.2) + S.add_edge(2, 5, weight=0.3) + S.add_edge(4, 3, weight=0.6) + S.add_edge(4, 5, weight=0.7) + S.add_edge(5, 4, weight=0.2) + + # save copy for later, test intermediate implementation details first + S2 = S.copy() + + # drop nodes of in-degree zero + z = [nid for nid, d in S.in_degree if d == 0] + for nid in z: + S.remove_node(nid) + + # find adjacency matrix + q = nx.linalg.graphmatrix.adjacency_matrix(S).T + + # fmt: off + expected_q = np.array([ + [0, 0, 0., 0], + [0.2, 0, 0.6, 0], + [0, 0, 0, 0.2], + [0.3, 0, 0.7, 0] + ]) + # fmt: on + assert np.array_equal(q.todense(), expected_q) + + # must be square, size of number of nodes + assert len(q.shape) == 2 + assert q.shape[0] == q.shape[1] + assert q.shape[0] == len(S) + + nn = q.shape[0] + + i = np.eye(nn) + n = np.linalg.inv(i - q) + y = np.asarray(n) @ np.ones(nn) + + expected_y = np.array([1, 2.07906977, 1.46511628, 2.3255814]) + assert np.allclose(y, expected_y) + + expected_d = {1: 1, 2: 2, 3: 3.07906977, 4: 2.46511628, 5: 3.3255814} + + d = nx.trophic_levels(S2) + + for nid, level in d.items(): + expected_level = expected_d[nid] + assert expected_level == pytest.approx(level, abs=1e-7) + + +def test_trophic_levels_simple(): + matrix_a = np.array([[0, 0], [1, 0]]) + G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph) + d = nx.trophic_levels(G) + assert d[0] == pytest.approx(2, abs=1e-7) + assert d[1] == pytest.approx(1, abs=1e-7) + + +def test_trophic_levels_more_complex(): + # fmt: off + matrix = np.array([ + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1], + [0, 0, 0, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix, create_using=nx.DiGraph) + d = nx.trophic_levels(G) + expected_result = [1, 2, 3, 4] + for ind in range(4): + assert d[ind] == pytest.approx(expected_result[ind], abs=1e-7) + + # fmt: off + matrix = np.array([ + [0, 1, 1, 0], + [0, 0, 1, 1], + [0, 0, 0, 1], + [0, 0, 0, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix, create_using=nx.DiGraph) + d = nx.trophic_levels(G) + + expected_result = [1, 2, 2.5, 3.25] + print("Calculated result: ", d) + print("Expected Result: ", expected_result) + + for ind in range(4): + assert d[ind] == pytest.approx(expected_result[ind], abs=1e-7) + + +def test_trophic_levels_even_more_complex(): + # fmt: off + # Another, bigger matrix + matrix = np.array([ + [0, 0, 0, 0, 0], + [0, 1, 0, 1, 0], + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 0, 1, 0] + ]) + # Generated this linear system using pen and paper: + K = np.array([ + [1, 0, -1, 0, 0], + [0, 0.5, 0, -0.5, 0], + [0, 0, 1, 0, 0], + [0, -0.5, 0, 1, -0.5], + [0, 0, 0, 0, 1], + ]) + # fmt: on + result_1 = np.ravel(np.linalg.inv(K) @ np.ones(5)) + G = nx.from_numpy_array(matrix, create_using=nx.DiGraph) + result_2 = nx.trophic_levels(G) + + for ind in range(5): + assert result_1[ind] == pytest.approx(result_2[ind], abs=1e-7) + + +def test_trophic_levels_singular_matrix(): + """Should raise an error with graphs with only non-basal nodes""" + matrix = np.identity(4) + G = nx.from_numpy_array(matrix, create_using=nx.DiGraph) + with pytest.raises(nx.NetworkXError) as e: + nx.trophic_levels(G) + msg = ( + "Trophic levels are only defined for graphs where every node " + + "has a path from a basal node (basal nodes are nodes with no " + + "incoming edges)." + ) + assert msg in str(e.value) + + +def test_trophic_levels_singular_with_basal(): + """Should fail to compute if there are any parts of the graph which are not + reachable from any basal node (with in-degree zero). + """ + G = nx.DiGraph() + # a has in-degree zero + G.add_edge("a", "b") + + # b is one level above a, c and d + G.add_edge("c", "b") + G.add_edge("d", "b") + + # c and d form a loop, neither are reachable from a + G.add_edge("c", "d") + G.add_edge("d", "c") + + with pytest.raises(nx.NetworkXError) as e: + nx.trophic_levels(G) + msg = ( + "Trophic levels are only defined for graphs where every node " + + "has a path from a basal node (basal nodes are nodes with no " + + "incoming edges)." + ) + assert msg in str(e.value) + + # if self-loops are allowed, smaller example: + G = nx.DiGraph() + G.add_edge("a", "b") # a has in-degree zero + G.add_edge("c", "b") # b is one level above a and c + G.add_edge("c", "c") # c has a self-loop + with pytest.raises(nx.NetworkXError) as e: + nx.trophic_levels(G) + msg = ( + "Trophic levels are only defined for graphs where every node " + + "has a path from a basal node (basal nodes are nodes with no " + + "incoming edges)." + ) + assert msg in str(e.value) + + +def test_trophic_differences(): + matrix_a = np.array([[0, 1], [0, 0]]) + G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph) + diffs = nx.trophic_differences(G) + assert diffs[(0, 1)] == pytest.approx(1, abs=1e-7) + + # fmt: off + matrix_b = np.array([ + [0, 1, 1, 0], + [0, 0, 1, 1], + [0, 0, 0, 1], + [0, 0, 0, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix_b, create_using=nx.DiGraph) + diffs = nx.trophic_differences(G) + + assert diffs[(0, 1)] == pytest.approx(1, abs=1e-7) + assert diffs[(0, 2)] == pytest.approx(1.5, abs=1e-7) + assert diffs[(1, 2)] == pytest.approx(0.5, abs=1e-7) + assert diffs[(1, 3)] == pytest.approx(1.25, abs=1e-7) + assert diffs[(2, 3)] == pytest.approx(0.75, abs=1e-7) + + +def test_trophic_incoherence_parameter_no_cannibalism(): + matrix_a = np.array([[0, 1], [0, 0]]) + G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=False) + assert q == pytest.approx(0, abs=1e-7) + + # fmt: off + matrix_b = np.array([ + [0, 1, 1, 0], + [0, 0, 1, 1], + [0, 0, 0, 1], + [0, 0, 0, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix_b, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=False) + assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7) + + # fmt: off + matrix_c = np.array([ + [0, 1, 1, 0], + [0, 1, 1, 1], + [0, 0, 0, 1], + [0, 0, 0, 1] + ]) + # fmt: on + G = nx.from_numpy_array(matrix_c, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=False) + # Ignore the -link + assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7) + + # no self-loops case + # fmt: off + matrix_d = np.array([ + [0, 1, 1, 0], + [0, 0, 1, 1], + [0, 0, 0, 1], + [0, 0, 0, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix_d, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=False) + # Ignore the -link + assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7) + + +def test_trophic_incoherence_parameter_cannibalism(): + matrix_a = np.array([[0, 1], [0, 0]]) + G = nx.from_numpy_array(matrix_a, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=True) + assert q == pytest.approx(0, abs=1e-7) + + # fmt: off + matrix_b = np.array([ + [0, 0, 0, 0, 0], + [0, 1, 0, 1, 0], + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 0, 1, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix_b, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=True) + assert q == pytest.approx(2, abs=1e-7) + + # fmt: off + matrix_c = np.array([ + [0, 1, 1, 0], + [0, 0, 1, 1], + [0, 0, 0, 1], + [0, 0, 0, 0] + ]) + # fmt: on + G = nx.from_numpy_array(matrix_c, create_using=nx.DiGraph) + q = nx.trophic_incoherence_parameter(G, cannibalism=True) + # Ignore the -link + assert q == pytest.approx(np.std([1, 1.5, 0.5, 0.75, 1.25]), abs=1e-7) |