diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/flow_matrix.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/flow_matrix.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/centrality/flow_matrix.py | 130 |
1 files changed, 130 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/flow_matrix.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/flow_matrix.py new file mode 100644 index 00000000..e72b5e97 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/centrality/flow_matrix.py @@ -0,0 +1,130 @@ +# Helpers for current-flow betweenness and current-flow closeness +# Lazy computations for inverse Laplacian and flow-matrix rows. +import networkx as nx + + +@nx._dispatchable(edge_attrs="weight") +def flow_matrix_row(G, weight=None, dtype=float, solver="lu"): + # Generate a row of the current-flow matrix + import numpy as np + + solvername = { + "full": FullInverseLaplacian, + "lu": SuperLUInverseLaplacian, + "cg": CGInverseLaplacian, + } + n = G.number_of_nodes() + L = nx.laplacian_matrix(G, nodelist=range(n), weight=weight).asformat("csc") + L = L.astype(dtype) + C = solvername[solver](L, dtype=dtype) # initialize solver + w = C.w # w is the Laplacian matrix width + # row-by-row flow matrix + for u, v in sorted(sorted((u, v)) for u, v in G.edges()): + B = np.zeros(w, dtype=dtype) + c = G[u][v].get(weight, 1.0) + B[u % w] = c + B[v % w] = -c + # get only the rows needed in the inverse laplacian + # and multiply to get the flow matrix row + row = B @ C.get_rows(u, v) + yield row, (u, v) + + +# Class to compute the inverse laplacian only for specified rows +# Allows computation of the current-flow matrix without storing entire +# inverse laplacian matrix +class InverseLaplacian: + def __init__(self, L, width=None, dtype=None): + global np + import numpy as np + + (n, n) = L.shape + self.dtype = dtype + self.n = n + if width is None: + self.w = self.width(L) + else: + self.w = width + self.C = np.zeros((self.w, n), dtype=dtype) + self.L1 = L[1:, 1:] + self.init_solver(L) + + def init_solver(self, L): + pass + + def solve(self, r): + raise nx.NetworkXError("Implement solver") + + def solve_inverse(self, r): + raise nx.NetworkXError("Implement solver") + + def get_rows(self, r1, r2): + for r in range(r1, r2 + 1): + self.C[r % self.w, 1:] = self.solve_inverse(r) + return self.C + + def get_row(self, r): + self.C[r % self.w, 1:] = self.solve_inverse(r) + return self.C[r % self.w] + + def width(self, L): + m = 0 + for i, row in enumerate(L): + w = 0 + y = np.nonzero(row)[-1] + if len(y) > 0: + v = y - i + w = v.max() - v.min() + 1 + m = max(w, m) + return m + + +class FullInverseLaplacian(InverseLaplacian): + def init_solver(self, L): + self.IL = np.zeros(L.shape, dtype=self.dtype) + self.IL[1:, 1:] = np.linalg.inv(self.L1.todense()) + + def solve(self, rhs): + s = np.zeros(rhs.shape, dtype=self.dtype) + s = self.IL @ rhs + return s + + def solve_inverse(self, r): + return self.IL[r, 1:] + + +class SuperLUInverseLaplacian(InverseLaplacian): + def init_solver(self, L): + import scipy as sp + + self.lusolve = sp.sparse.linalg.factorized(self.L1.tocsc()) + + def solve_inverse(self, r): + rhs = np.zeros(self.n, dtype=self.dtype) + rhs[r] = 1 + return self.lusolve(rhs[1:]) + + def solve(self, rhs): + s = np.zeros(rhs.shape, dtype=self.dtype) + s[1:] = self.lusolve(rhs[1:]) + return s + + +class CGInverseLaplacian(InverseLaplacian): + def init_solver(self, L): + global sp + import scipy as sp + + ilu = sp.sparse.linalg.spilu(self.L1.tocsc()) + n = self.n - 1 + self.M = sp.sparse.linalg.LinearOperator(shape=(n, n), matvec=ilu.solve) + + def solve(self, rhs): + s = np.zeros(rhs.shape, dtype=self.dtype) + s[1:] = sp.sparse.linalg.cg(self.L1, rhs[1:], M=self.M, atol=0)[0] + return s + + def solve_inverse(self, r): + rhs = np.zeros(self.n, self.dtype) + rhs[r] = 1 + return sp.sparse.linalg.cg(self.L1, rhs[1:], M=self.M, atol=0)[0] |