diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/boundary.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/boundary.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/boundary.py | 168 |
1 files changed, 168 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/boundary.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/boundary.py new file mode 100644 index 00000000..ba05d803 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/boundary.py @@ -0,0 +1,168 @@ +"""Routines to find the boundary of a set of nodes. + +An edge boundary is a set of edges, each of which has exactly one +endpoint in a given set of nodes (or, in the case of directed graphs, +the set of edges whose source node is in the set). + +A node boundary of a set *S* of nodes is the set of (out-)neighbors of +nodes in *S* that are outside *S*. + +""" + +from itertools import chain + +import networkx as nx + +__all__ = ["edge_boundary", "node_boundary"] + + +@nx._dispatchable(edge_attrs={"data": "default"}, preserve_edge_attrs="data") +def edge_boundary(G, nbunch1, nbunch2=None, data=False, keys=False, default=None): + """Returns the edge boundary of `nbunch1`. + + The *edge boundary* of a set *S* with respect to a set *T* is the + set of edges (*u*, *v*) such that *u* is in *S* and *v* is in *T*. + If *T* is not specified, it is assumed to be the set of all nodes + not in *S*. + + Parameters + ---------- + G : NetworkX graph + + nbunch1 : iterable + Iterable of nodes in the graph representing the set of nodes + whose edge boundary will be returned. (This is the set *S* from + the definition above.) + + nbunch2 : iterable + Iterable of nodes representing the target (or "exterior") set of + nodes. (This is the set *T* from the definition above.) If not + specified, this is assumed to be the set of all nodes in `G` + not in `nbunch1`. + + keys : bool + This parameter has the same meaning as in + :meth:`MultiGraph.edges`. + + data : bool or object + This parameter has the same meaning as in + :meth:`MultiGraph.edges`. + + default : object + This parameter has the same meaning as in + :meth:`MultiGraph.edges`. + + Returns + ------- + iterator + An iterator over the edges in the boundary of `nbunch1` with + respect to `nbunch2`. If `keys`, `data`, or `default` + are specified and `G` is a multigraph, then edges are returned + with keys and/or data, as in :meth:`MultiGraph.edges`. + + Examples + -------- + >>> G = nx.wheel_graph(6) + + When nbunch2=None: + + >>> list(nx.edge_boundary(G, (1, 3))) + [(1, 0), (1, 2), (1, 5), (3, 0), (3, 2), (3, 4)] + + When nbunch2 is given: + + >>> list(nx.edge_boundary(G, (1, 3), (2, 0))) + [(1, 0), (1, 2), (3, 0), (3, 2)] + + Notes + ----- + Any element of `nbunch` that is not in the graph `G` will be + ignored. + + `nbunch1` and `nbunch2` are usually meant to be disjoint, but in + the interest of speed and generality, that is not required here. + + """ + nset1 = {n for n in nbunch1 if n in G} + # Here we create an iterator over edges incident to nodes in the set + # `nset1`. The `Graph.edges()` method does not provide a guarantee + # on the orientation of the edges, so our algorithm below must + # handle the case in which exactly one orientation, either (u, v) or + # (v, u), appears in this iterable. + if G.is_multigraph(): + edges = G.edges(nset1, data=data, keys=keys, default=default) + else: + edges = G.edges(nset1, data=data, default=default) + # If `nbunch2` is not provided, then it is assumed to be the set + # complement of `nbunch1`. For the sake of efficiency, this is + # implemented by using the `not in` operator, instead of by creating + # an additional set and using the `in` operator. + if nbunch2 is None: + return (e for e in edges if (e[0] in nset1) ^ (e[1] in nset1)) + nset2 = set(nbunch2) + return ( + e + for e in edges + if (e[0] in nset1 and e[1] in nset2) or (e[1] in nset1 and e[0] in nset2) + ) + + +@nx._dispatchable +def node_boundary(G, nbunch1, nbunch2=None): + """Returns the node boundary of `nbunch1`. + + The *node boundary* of a set *S* with respect to a set *T* is the + set of nodes *v* in *T* such that for some *u* in *S*, there is an + edge joining *u* to *v*. If *T* is not specified, it is assumed to + be the set of all nodes not in *S*. + + Parameters + ---------- + G : NetworkX graph + + nbunch1 : iterable + Iterable of nodes in the graph representing the set of nodes + whose node boundary will be returned. (This is the set *S* from + the definition above.) + + nbunch2 : iterable + Iterable of nodes representing the target (or "exterior") set of + nodes. (This is the set *T* from the definition above.) If not + specified, this is assumed to be the set of all nodes in `G` + not in `nbunch1`. + + Returns + ------- + set + The node boundary of `nbunch1` with respect to `nbunch2`. + + Examples + -------- + >>> G = nx.wheel_graph(6) + + When nbunch2=None: + + >>> list(nx.node_boundary(G, (3, 4))) + [0, 2, 5] + + When nbunch2 is given: + + >>> list(nx.node_boundary(G, (3, 4), (0, 1, 5))) + [0, 5] + + Notes + ----- + Any element of `nbunch` that is not in the graph `G` will be + ignored. + + `nbunch1` and `nbunch2` are usually meant to be disjoint, but in + the interest of speed and generality, that is not required here. + + """ + nset1 = {n for n in nbunch1 if n in G} + bdy = set(chain.from_iterable(G[v] for v in nset1)) - nset1 + # If `nbunch2` is not specified, it is assumed to be the set + # complement of `nbunch1`. + if nbunch2 is not None: + bdy &= set(nbunch2) + return bdy |