aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/utils.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/utils.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/utils.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/utils.py6605
1 files changed, 6605 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/utils.py b/.venv/lib/python3.12/site-packages/litellm/utils.py
new file mode 100644
index 00000000..52dbccb0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/utils.py
@@ -0,0 +1,6605 @@
+# +-----------------------------------------------+
+# | |
+# | Give Feedback / Get Help |
+# | https://github.com/BerriAI/litellm/issues/new |
+# | |
+# +-----------------------------------------------+
+#
+# Thank you users! We ❤️ you! - Krrish & Ishaan
+
+import ast
+import asyncio
+import base64
+import binascii
+import copy
+import datetime
+import hashlib
+import inspect
+import io
+import itertools
+import json
+import logging
+import os
+import random # type: ignore
+import re
+import struct
+import subprocess
+
+# What is this?
+## Generic utils.py file. Problem-specific utils (e.g. 'cost calculation), should all be in `litellm_core_utils/`.
+import sys
+import textwrap
+import threading
+import time
+import traceback
+import uuid
+from dataclasses import dataclass, field
+from functools import lru_cache, wraps
+from importlib import resources
+from inspect import iscoroutine
+from os.path import abspath, dirname, join
+
+import aiohttp
+import dotenv
+import httpx
+import openai
+import tiktoken
+from httpx import Proxy
+from httpx._utils import get_environment_proxies
+from openai.lib import _parsing, _pydantic
+from openai.types.chat.completion_create_params import ResponseFormat
+from pydantic import BaseModel
+from tiktoken import Encoding
+from tokenizers import Tokenizer
+
+import litellm
+import litellm._service_logger # for storing API inputs, outputs, and metadata
+import litellm.litellm_core_utils
+import litellm.litellm_core_utils.audio_utils.utils
+import litellm.litellm_core_utils.json_validation_rule
+from litellm.caching._internal_lru_cache import lru_cache_wrapper
+from litellm.caching.caching import DualCache
+from litellm.caching.caching_handler import CachingHandlerResponse, LLMCachingHandler
+from litellm.integrations.custom_guardrail import CustomGuardrail
+from litellm.integrations.custom_logger import CustomLogger
+from litellm.litellm_core_utils.core_helpers import (
+ map_finish_reason,
+ process_response_headers,
+)
+from litellm.litellm_core_utils.credential_accessor import CredentialAccessor
+from litellm.litellm_core_utils.default_encoding import encoding
+from litellm.litellm_core_utils.exception_mapping_utils import (
+ _get_response_headers,
+ exception_type,
+ get_error_message,
+)
+from litellm.litellm_core_utils.get_litellm_params import (
+ _get_base_model_from_litellm_call_metadata,
+ get_litellm_params,
+)
+from litellm.litellm_core_utils.get_llm_provider_logic import (
+ _is_non_openai_azure_model,
+ get_llm_provider,
+)
+from litellm.litellm_core_utils.get_supported_openai_params import (
+ get_supported_openai_params,
+)
+from litellm.litellm_core_utils.llm_request_utils import _ensure_extra_body_is_safe
+from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
+ LiteLLMResponseObjectHandler,
+ _handle_invalid_parallel_tool_calls,
+ _parse_content_for_reasoning,
+ convert_to_model_response_object,
+ convert_to_streaming_response,
+ convert_to_streaming_response_async,
+)
+from litellm.litellm_core_utils.llm_response_utils.get_api_base import get_api_base
+from litellm.litellm_core_utils.llm_response_utils.get_formatted_prompt import (
+ get_formatted_prompt,
+)
+from litellm.litellm_core_utils.llm_response_utils.get_headers import (
+ get_response_headers,
+)
+from litellm.litellm_core_utils.llm_response_utils.response_metadata import (
+ ResponseMetadata,
+)
+from litellm.litellm_core_utils.redact_messages import (
+ LiteLLMLoggingObject,
+ redact_message_input_output_from_logging,
+)
+from litellm.litellm_core_utils.rules import Rules
+from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
+from litellm.litellm_core_utils.token_counter import (
+ calculate_img_tokens,
+ get_modified_max_tokens,
+)
+from litellm.llms.bedrock.common_utils import BedrockModelInfo
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.router_utils.get_retry_from_policy import (
+ get_num_retries_from_retry_policy,
+ reset_retry_policy,
+)
+from litellm.secret_managers.main import get_secret
+from litellm.types.llms.anthropic import (
+ ANTHROPIC_API_ONLY_HEADERS,
+ AnthropicThinkingParam,
+)
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ AllPromptValues,
+ ChatCompletionAssistantToolCall,
+ ChatCompletionNamedToolChoiceParam,
+ ChatCompletionToolParam,
+ ChatCompletionToolParamFunctionChunk,
+ OpenAITextCompletionUserMessage,
+)
+from litellm.types.rerank import RerankResponse
+from litellm.types.utils import FileTypes # type: ignore
+from litellm.types.utils import (
+ OPENAI_RESPONSE_HEADERS,
+ CallTypes,
+ ChatCompletionDeltaToolCall,
+ ChatCompletionMessageToolCall,
+ Choices,
+ CostPerToken,
+ CredentialItem,
+ CustomHuggingfaceTokenizer,
+ Delta,
+ Embedding,
+ EmbeddingResponse,
+ Function,
+ ImageResponse,
+ LlmProviders,
+ LlmProvidersSet,
+ Message,
+ ModelInfo,
+ ModelInfoBase,
+ ModelResponse,
+ ModelResponseStream,
+ ProviderField,
+ ProviderSpecificModelInfo,
+ RawRequestTypedDict,
+ SelectTokenizerResponse,
+ StreamingChoices,
+ TextChoices,
+ TextCompletionResponse,
+ TranscriptionResponse,
+ Usage,
+ all_litellm_params,
+)
+
+with resources.open_text(
+ "litellm.litellm_core_utils.tokenizers", "anthropic_tokenizer.json"
+) as f:
+ json_data = json.load(f)
+# Convert to str (if necessary)
+claude_json_str = json.dumps(json_data)
+import importlib.metadata
+from typing import (
+ TYPE_CHECKING,
+ Any,
+ Callable,
+ Dict,
+ Iterable,
+ List,
+ Literal,
+ Optional,
+ Tuple,
+ Type,
+ Union,
+ cast,
+ get_args,
+)
+
+from openai import OpenAIError as OriginalError
+
+from litellm.litellm_core_utils.thread_pool_executor import executor
+from litellm.llms.base_llm.anthropic_messages.transformation import (
+ BaseAnthropicMessagesConfig,
+)
+from litellm.llms.base_llm.audio_transcription.transformation import (
+ BaseAudioTranscriptionConfig,
+)
+from litellm.llms.base_llm.base_utils import (
+ BaseLLMModelInfo,
+ type_to_response_format_param,
+)
+from litellm.llms.base_llm.chat.transformation import BaseConfig
+from litellm.llms.base_llm.completion.transformation import BaseTextCompletionConfig
+from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
+from litellm.llms.base_llm.image_variations.transformation import (
+ BaseImageVariationConfig,
+)
+from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
+from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
+
+from ._logging import _is_debugging_on, verbose_logger
+from .caching.caching import (
+ Cache,
+ QdrantSemanticCache,
+ RedisCache,
+ RedisSemanticCache,
+ S3Cache,
+)
+from .exceptions import (
+ APIConnectionError,
+ APIError,
+ AuthenticationError,
+ BadRequestError,
+ BudgetExceededError,
+ ContentPolicyViolationError,
+ ContextWindowExceededError,
+ NotFoundError,
+ OpenAIError,
+ PermissionDeniedError,
+ RateLimitError,
+ ServiceUnavailableError,
+ Timeout,
+ UnprocessableEntityError,
+ UnsupportedParamsError,
+)
+from .proxy._types import AllowedModelRegion, KeyManagementSystem
+from .types.llms.openai import (
+ ChatCompletionDeltaToolCallChunk,
+ ChatCompletionToolCallChunk,
+ ChatCompletionToolCallFunctionChunk,
+)
+from .types.router import LiteLLM_Params
+
+####### ENVIRONMENT VARIABLES ####################
+# Adjust to your specific application needs / system capabilities.
+sentry_sdk_instance = None
+capture_exception = None
+add_breadcrumb = None
+posthog = None
+slack_app = None
+alerts_channel = None
+heliconeLogger = None
+athinaLogger = None
+promptLayerLogger = None
+langsmithLogger = None
+logfireLogger = None
+weightsBiasesLogger = None
+customLogger = None
+langFuseLogger = None
+openMeterLogger = None
+lagoLogger = None
+dataDogLogger = None
+prometheusLogger = None
+dynamoLogger = None
+s3Logger = None
+genericAPILogger = None
+greenscaleLogger = None
+lunaryLogger = None
+aispendLogger = None
+supabaseClient = None
+callback_list: Optional[List[str]] = []
+user_logger_fn = None
+additional_details: Optional[Dict[str, str]] = {}
+local_cache: Optional[Dict[str, str]] = {}
+last_fetched_at = None
+last_fetched_at_keys = None
+######## Model Response #########################
+
+# All liteLLM Model responses will be in this format, Follows the OpenAI Format
+# https://docs.litellm.ai/docs/completion/output
+# {
+# 'choices': [
+# {
+# 'finish_reason': 'stop',
+# 'index': 0,
+# 'message': {
+# 'role': 'assistant',
+# 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
+# }
+# }
+# ],
+# 'created': 1691429984.3852863,
+# 'model': 'claude-instant-1',
+# 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
+# }
+
+
+############################################################
+def print_verbose(
+ print_statement,
+ logger_only: bool = False,
+ log_level: Literal["DEBUG", "INFO", "ERROR"] = "DEBUG",
+):
+ try:
+ if log_level == "DEBUG":
+ verbose_logger.debug(print_statement)
+ elif log_level == "INFO":
+ verbose_logger.info(print_statement)
+ elif log_level == "ERROR":
+ verbose_logger.error(print_statement)
+ if litellm.set_verbose is True and logger_only is False:
+ print(print_statement) # noqa
+ except Exception:
+ pass
+
+
+####### CLIENT ###################
+# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
+def custom_llm_setup():
+ """
+ Add custom_llm provider to provider list
+ """
+ for custom_llm in litellm.custom_provider_map:
+ if custom_llm["provider"] not in litellm.provider_list:
+ litellm.provider_list.append(custom_llm["provider"])
+
+ if custom_llm["provider"] not in litellm._custom_providers:
+ litellm._custom_providers.append(custom_llm["provider"])
+
+
+def _add_custom_logger_callback_to_specific_event(
+ callback: str, logging_event: Literal["success", "failure"]
+) -> None:
+ """
+ Add a custom logger callback to the specific event
+ """
+ from litellm import _custom_logger_compatible_callbacks_literal
+ from litellm.litellm_core_utils.litellm_logging import (
+ _init_custom_logger_compatible_class,
+ )
+
+ if callback not in litellm._known_custom_logger_compatible_callbacks:
+ verbose_logger.debug(
+ f"Callback {callback} is not a valid custom logger compatible callback. Known list - {litellm._known_custom_logger_compatible_callbacks}"
+ )
+ return
+
+ callback_class = _init_custom_logger_compatible_class(
+ cast(_custom_logger_compatible_callbacks_literal, callback),
+ internal_usage_cache=None,
+ llm_router=None,
+ )
+
+ if callback_class:
+ if (
+ logging_event == "success"
+ and _custom_logger_class_exists_in_success_callbacks(callback_class)
+ is False
+ ):
+ litellm.logging_callback_manager.add_litellm_success_callback(
+ callback_class
+ )
+ litellm.logging_callback_manager.add_litellm_async_success_callback(
+ callback_class
+ )
+ if callback in litellm.success_callback:
+ litellm.success_callback.remove(
+ callback
+ ) # remove the string from the callback list
+ if callback in litellm._async_success_callback:
+ litellm._async_success_callback.remove(
+ callback
+ ) # remove the string from the callback list
+ elif (
+ logging_event == "failure"
+ and _custom_logger_class_exists_in_failure_callbacks(callback_class)
+ is False
+ ):
+ litellm.logging_callback_manager.add_litellm_failure_callback(
+ callback_class
+ )
+ litellm.logging_callback_manager.add_litellm_async_failure_callback(
+ callback_class
+ )
+ if callback in litellm.failure_callback:
+ litellm.failure_callback.remove(
+ callback
+ ) # remove the string from the callback list
+ if callback in litellm._async_failure_callback:
+ litellm._async_failure_callback.remove(
+ callback
+ ) # remove the string from the callback list
+
+
+def _custom_logger_class_exists_in_success_callbacks(
+ callback_class: CustomLogger,
+) -> bool:
+ """
+ Returns True if an instance of the custom logger exists in litellm.success_callback or litellm._async_success_callback
+
+ e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.success_callback or litellm._async_success_callback
+
+ Prevents double adding a custom logger callback to the litellm callbacks
+ """
+ return any(
+ isinstance(cb, type(callback_class))
+ for cb in litellm.success_callback + litellm._async_success_callback
+ )
+
+
+def _custom_logger_class_exists_in_failure_callbacks(
+ callback_class: CustomLogger,
+) -> bool:
+ """
+ Returns True if an instance of the custom logger exists in litellm.failure_callback or litellm._async_failure_callback
+
+ e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.failure_callback or litellm._async_failure_callback
+
+ Prevents double adding a custom logger callback to the litellm callbacks
+ """
+ return any(
+ isinstance(cb, type(callback_class))
+ for cb in litellm.failure_callback + litellm._async_failure_callback
+ )
+
+
+def get_request_guardrails(kwargs: Dict[str, Any]) -> List[str]:
+ """
+ Get the request guardrails from the kwargs
+ """
+ metadata = kwargs.get("metadata") or {}
+ requester_metadata = metadata.get("requester_metadata") or {}
+ applied_guardrails = requester_metadata.get("guardrails") or []
+ return applied_guardrails
+
+
+def get_applied_guardrails(kwargs: Dict[str, Any]) -> List[str]:
+ """
+ - Add 'default_on' guardrails to the list
+ - Add request guardrails to the list
+ """
+
+ request_guardrails = get_request_guardrails(kwargs)
+ applied_guardrails = []
+ for callback in litellm.callbacks:
+ if callback is not None and isinstance(callback, CustomGuardrail):
+ if callback.guardrail_name is not None:
+ if callback.default_on is True:
+ applied_guardrails.append(callback.guardrail_name)
+ elif callback.guardrail_name in request_guardrails:
+ applied_guardrails.append(callback.guardrail_name)
+
+ return applied_guardrails
+
+
+def load_credentials_from_list(kwargs: dict):
+ """
+ Updates kwargs with the credentials if credential_name in kwarg
+ """
+ credential_name = kwargs.get("litellm_credential_name")
+ if credential_name and litellm.credential_list:
+ credential_accessor = CredentialAccessor.get_credential_values(credential_name)
+ for key, value in credential_accessor.items():
+ if key not in kwargs:
+ kwargs[key] = value
+
+
+def get_dynamic_callbacks(
+ dynamic_callbacks: Optional[List[Union[str, Callable, CustomLogger]]]
+) -> List:
+ returned_callbacks = litellm.callbacks.copy()
+ if dynamic_callbacks:
+ returned_callbacks.extend(dynamic_callbacks) # type: ignore
+ return returned_callbacks
+
+
+def function_setup( # noqa: PLR0915
+ original_function: str, rules_obj, start_time, *args, **kwargs
+): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
+
+ ### NOTICES ###
+ from litellm import Logging as LiteLLMLogging
+ from litellm.litellm_core_utils.litellm_logging import set_callbacks
+
+ if litellm.set_verbose is True:
+ verbose_logger.warning(
+ "`litellm.set_verbose` is deprecated. Please set `os.environ['LITELLM_LOG'] = 'DEBUG'` for debug logs."
+ )
+ try:
+ global callback_list, add_breadcrumb, user_logger_fn, Logging
+
+ ## CUSTOM LLM SETUP ##
+ custom_llm_setup()
+
+ ## GET APPLIED GUARDRAILS
+ applied_guardrails = get_applied_guardrails(kwargs)
+
+ ## LOGGING SETUP
+ function_id: Optional[str] = kwargs["id"] if "id" in kwargs else None
+
+ ## DYNAMIC CALLBACKS ##
+ dynamic_callbacks: Optional[List[Union[str, Callable, CustomLogger]]] = (
+ kwargs.pop("callbacks", None)
+ )
+ all_callbacks = get_dynamic_callbacks(dynamic_callbacks=dynamic_callbacks)
+
+ if len(all_callbacks) > 0:
+ for callback in all_callbacks:
+ # check if callback is a string - e.g. "lago", "openmeter"
+ if isinstance(callback, str):
+ callback = litellm.litellm_core_utils.litellm_logging._init_custom_logger_compatible_class( # type: ignore
+ callback, internal_usage_cache=None, llm_router=None # type: ignore
+ )
+ if callback is None or any(
+ isinstance(cb, type(callback))
+ for cb in litellm._async_success_callback
+ ): # don't double add a callback
+ continue
+ if callback not in litellm.input_callback:
+ litellm.input_callback.append(callback) # type: ignore
+ if callback not in litellm.success_callback:
+ litellm.logging_callback_manager.add_litellm_success_callback(callback) # type: ignore
+ if callback not in litellm.failure_callback:
+ litellm.logging_callback_manager.add_litellm_failure_callback(callback) # type: ignore
+ if callback not in litellm._async_success_callback:
+ litellm.logging_callback_manager.add_litellm_async_success_callback(callback) # type: ignore
+ if callback not in litellm._async_failure_callback:
+ litellm.logging_callback_manager.add_litellm_async_failure_callback(callback) # type: ignore
+ print_verbose(
+ f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
+ )
+
+ if (
+ len(litellm.input_callback) > 0
+ or len(litellm.success_callback) > 0
+ or len(litellm.failure_callback) > 0
+ ) and len(
+ callback_list # type: ignore
+ ) == 0: # type: ignore
+ callback_list = list(
+ set(
+ litellm.input_callback # type: ignore
+ + litellm.success_callback
+ + litellm.failure_callback
+ )
+ )
+ set_callbacks(callback_list=callback_list, function_id=function_id)
+ ## ASYNC CALLBACKS
+ if len(litellm.input_callback) > 0:
+ removed_async_items = []
+ for index, callback in enumerate(litellm.input_callback): # type: ignore
+ if inspect.iscoroutinefunction(callback):
+ litellm._async_input_callback.append(callback)
+ removed_async_items.append(index)
+
+ # Pop the async items from input_callback in reverse order to avoid index issues
+ for index in reversed(removed_async_items):
+ litellm.input_callback.pop(index)
+ if len(litellm.success_callback) > 0:
+ removed_async_items = []
+ for index, callback in enumerate(litellm.success_callback): # type: ignore
+ if inspect.iscoroutinefunction(callback):
+ litellm.logging_callback_manager.add_litellm_async_success_callback(
+ callback
+ )
+ removed_async_items.append(index)
+ elif callback == "dynamodb" or callback == "openmeter":
+ # dynamo is an async callback, it's used for the proxy and needs to be async
+ # we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
+ litellm.logging_callback_manager.add_litellm_async_success_callback(
+ callback
+ )
+ removed_async_items.append(index)
+ elif (
+ callback in litellm._known_custom_logger_compatible_callbacks
+ and isinstance(callback, str)
+ ):
+ _add_custom_logger_callback_to_specific_event(callback, "success")
+
+ # Pop the async items from success_callback in reverse order to avoid index issues
+ for index in reversed(removed_async_items):
+ litellm.success_callback.pop(index)
+
+ if len(litellm.failure_callback) > 0:
+ removed_async_items = []
+ for index, callback in enumerate(litellm.failure_callback): # type: ignore
+ if inspect.iscoroutinefunction(callback):
+ litellm.logging_callback_manager.add_litellm_async_failure_callback(
+ callback
+ )
+ removed_async_items.append(index)
+ elif (
+ callback in litellm._known_custom_logger_compatible_callbacks
+ and isinstance(callback, str)
+ ):
+ _add_custom_logger_callback_to_specific_event(callback, "failure")
+
+ # Pop the async items from failure_callback in reverse order to avoid index issues
+ for index in reversed(removed_async_items):
+ litellm.failure_callback.pop(index)
+ ### DYNAMIC CALLBACKS ###
+ dynamic_success_callbacks: Optional[
+ List[Union[str, Callable, CustomLogger]]
+ ] = None
+ dynamic_async_success_callbacks: Optional[
+ List[Union[str, Callable, CustomLogger]]
+ ] = None
+ dynamic_failure_callbacks: Optional[
+ List[Union[str, Callable, CustomLogger]]
+ ] = None
+ dynamic_async_failure_callbacks: Optional[
+ List[Union[str, Callable, CustomLogger]]
+ ] = None
+ if kwargs.get("success_callback", None) is not None and isinstance(
+ kwargs["success_callback"], list
+ ):
+ removed_async_items = []
+ for index, callback in enumerate(kwargs["success_callback"]):
+ if (
+ inspect.iscoroutinefunction(callback)
+ or callback == "dynamodb"
+ or callback == "s3"
+ ):
+ if dynamic_async_success_callbacks is not None and isinstance(
+ dynamic_async_success_callbacks, list
+ ):
+ dynamic_async_success_callbacks.append(callback)
+ else:
+ dynamic_async_success_callbacks = [callback]
+ removed_async_items.append(index)
+ # Pop the async items from success_callback in reverse order to avoid index issues
+ for index in reversed(removed_async_items):
+ kwargs["success_callback"].pop(index)
+ dynamic_success_callbacks = kwargs.pop("success_callback")
+ if kwargs.get("failure_callback", None) is not None and isinstance(
+ kwargs["failure_callback"], list
+ ):
+ dynamic_failure_callbacks = kwargs.pop("failure_callback")
+
+ if add_breadcrumb:
+ try:
+ details_to_log = copy.deepcopy(kwargs)
+ except Exception:
+ details_to_log = kwargs
+
+ if litellm.turn_off_message_logging:
+ # make a copy of the _model_Call_details and log it
+ details_to_log.pop("messages", None)
+ details_to_log.pop("input", None)
+ details_to_log.pop("prompt", None)
+ add_breadcrumb(
+ category="litellm.llm_call",
+ message=f"Keyword Args: {details_to_log}",
+ level="info",
+ )
+ if "logger_fn" in kwargs:
+ user_logger_fn = kwargs["logger_fn"]
+ # INIT LOGGER - for user-specified integrations
+ model = args[0] if len(args) > 0 else kwargs.get("model", None)
+ call_type = original_function
+ if (
+ call_type == CallTypes.completion.value
+ or call_type == CallTypes.acompletion.value
+ ):
+ messages = None
+ if len(args) > 1:
+ messages = args[1]
+ elif kwargs.get("messages", None):
+ messages = kwargs["messages"]
+ ### PRE-CALL RULES ###
+ if (
+ isinstance(messages, list)
+ and len(messages) > 0
+ and isinstance(messages[0], dict)
+ and "content" in messages[0]
+ ):
+ rules_obj.pre_call_rules(
+ input="".join(
+ m.get("content", "")
+ for m in messages
+ if "content" in m and isinstance(m["content"], str)
+ ),
+ model=model,
+ )
+ elif (
+ call_type == CallTypes.embedding.value
+ or call_type == CallTypes.aembedding.value
+ ):
+ messages = args[1] if len(args) > 1 else kwargs.get("input", None)
+ elif (
+ call_type == CallTypes.image_generation.value
+ or call_type == CallTypes.aimage_generation.value
+ ):
+ messages = args[0] if len(args) > 0 else kwargs["prompt"]
+ elif (
+ call_type == CallTypes.moderation.value
+ or call_type == CallTypes.amoderation.value
+ ):
+ messages = args[1] if len(args) > 1 else kwargs["input"]
+ elif (
+ call_type == CallTypes.atext_completion.value
+ or call_type == CallTypes.text_completion.value
+ ):
+ messages = args[0] if len(args) > 0 else kwargs["prompt"]
+ elif (
+ call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value
+ ):
+ messages = kwargs.get("query")
+ elif (
+ call_type == CallTypes.atranscription.value
+ or call_type == CallTypes.transcription.value
+ ):
+ _file_obj: FileTypes = args[1] if len(args) > 1 else kwargs["file"]
+ file_checksum = (
+ litellm.litellm_core_utils.audio_utils.utils.get_audio_file_name(
+ file_obj=_file_obj
+ )
+ )
+ if "metadata" in kwargs:
+ kwargs["metadata"]["file_checksum"] = file_checksum
+ else:
+ kwargs["metadata"] = {"file_checksum": file_checksum}
+ messages = file_checksum
+ elif (
+ call_type == CallTypes.aspeech.value or call_type == CallTypes.speech.value
+ ):
+ messages = kwargs.get("input", "speech")
+ elif (
+ call_type == CallTypes.aresponses.value
+ or call_type == CallTypes.responses.value
+ ):
+ messages = args[0] if len(args) > 0 else kwargs["input"]
+ else:
+ messages = "default-message-value"
+ stream = True if "stream" in kwargs and kwargs["stream"] is True else False
+ logging_obj = LiteLLMLogging(
+ model=model,
+ messages=messages,
+ stream=stream,
+ litellm_call_id=kwargs["litellm_call_id"],
+ litellm_trace_id=kwargs.get("litellm_trace_id"),
+ function_id=function_id or "",
+ call_type=call_type,
+ start_time=start_time,
+ dynamic_success_callbacks=dynamic_success_callbacks,
+ dynamic_failure_callbacks=dynamic_failure_callbacks,
+ dynamic_async_success_callbacks=dynamic_async_success_callbacks,
+ dynamic_async_failure_callbacks=dynamic_async_failure_callbacks,
+ kwargs=kwargs,
+ applied_guardrails=applied_guardrails,
+ )
+
+ ## check if metadata is passed in
+ litellm_params: Dict[str, Any] = {"api_base": ""}
+ if "metadata" in kwargs:
+ litellm_params["metadata"] = kwargs["metadata"]
+ logging_obj.update_environment_variables(
+ model=model,
+ user="",
+ optional_params={},
+ litellm_params=litellm_params,
+ stream_options=kwargs.get("stream_options", None),
+ )
+ return logging_obj, kwargs
+ except Exception as e:
+ verbose_logger.exception(
+ "litellm.utils.py::function_setup() - [Non-Blocking] Error in function_setup"
+ )
+ raise e
+
+
+async def _client_async_logging_helper(
+ logging_obj: LiteLLMLoggingObject,
+ result,
+ start_time,
+ end_time,
+ is_completion_with_fallbacks: bool,
+):
+ if (
+ is_completion_with_fallbacks is False
+ ): # don't log the parent event litellm.completion_with_fallbacks as a 'log_success_event', this will lead to double logging the same call - https://github.com/BerriAI/litellm/issues/7477
+ print_verbose(
+ f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
+ )
+ # check if user does not want this to be logged
+ asyncio.create_task(
+ logging_obj.async_success_handler(result, start_time, end_time)
+ )
+ logging_obj.handle_sync_success_callbacks_for_async_calls(
+ result=result,
+ start_time=start_time,
+ end_time=end_time,
+ )
+
+
+def _get_wrapper_num_retries(
+ kwargs: Dict[str, Any], exception: Exception
+) -> Tuple[Optional[int], Dict[str, Any]]:
+ """
+ Get the number of retries from the kwargs and the retry policy.
+ Used for the wrapper functions.
+ """
+
+ num_retries = kwargs.get("num_retries", None)
+ if num_retries is None:
+ num_retries = litellm.num_retries
+ if kwargs.get("retry_policy", None):
+ retry_policy_num_retries = get_num_retries_from_retry_policy(
+ exception=exception,
+ retry_policy=kwargs.get("retry_policy"),
+ )
+ kwargs["retry_policy"] = reset_retry_policy()
+ if retry_policy_num_retries is not None:
+ num_retries = retry_policy_num_retries
+
+ return num_retries, kwargs
+
+
+def _get_wrapper_timeout(
+ kwargs: Dict[str, Any], exception: Exception
+) -> Optional[Union[float, int, httpx.Timeout]]:
+ """
+ Get the timeout from the kwargs
+ Used for the wrapper functions.
+ """
+
+ timeout = cast(
+ Optional[Union[float, int, httpx.Timeout]], kwargs.get("timeout", None)
+ )
+
+ return timeout
+
+
+def client(original_function): # noqa: PLR0915
+ rules_obj = Rules()
+
+ def check_coroutine(value) -> bool:
+ if inspect.iscoroutine(value):
+ return True
+ elif inspect.iscoroutinefunction(value):
+ return True
+ else:
+ return False
+
+ def post_call_processing(original_response, model, optional_params: Optional[dict]):
+ try:
+ if original_response is None:
+ pass
+ else:
+ call_type = original_function.__name__
+ if (
+ call_type == CallTypes.completion.value
+ or call_type == CallTypes.acompletion.value
+ ):
+ is_coroutine = check_coroutine(original_response)
+ if is_coroutine is True:
+ pass
+ else:
+ if (
+ isinstance(original_response, ModelResponse)
+ and len(original_response.choices) > 0
+ ):
+ model_response: Optional[str] = original_response.choices[
+ 0
+ ].message.content # type: ignore
+ if model_response is not None:
+ ### POST-CALL RULES ###
+ rules_obj.post_call_rules(
+ input=model_response, model=model
+ )
+ ### JSON SCHEMA VALIDATION ###
+ if litellm.enable_json_schema_validation is True:
+ try:
+ if (
+ optional_params is not None
+ and "response_format" in optional_params
+ and optional_params["response_format"]
+ is not None
+ ):
+ json_response_format: Optional[dict] = None
+ if (
+ isinstance(
+ optional_params["response_format"],
+ dict,
+ )
+ and optional_params[
+ "response_format"
+ ].get("json_schema")
+ is not None
+ ):
+ json_response_format = optional_params[
+ "response_format"
+ ]
+ elif _parsing._completions.is_basemodel_type(
+ optional_params["response_format"] # type: ignore
+ ):
+ json_response_format = (
+ type_to_response_format_param(
+ response_format=optional_params[
+ "response_format"
+ ]
+ )
+ )
+ if json_response_format is not None:
+ litellm.litellm_core_utils.json_validation_rule.validate_schema(
+ schema=json_response_format[
+ "json_schema"
+ ]["schema"],
+ response=model_response,
+ )
+ except TypeError:
+ pass
+ if (
+ optional_params is not None
+ and "response_format" in optional_params
+ and isinstance(
+ optional_params["response_format"], dict
+ )
+ and "type" in optional_params["response_format"]
+ and optional_params["response_format"]["type"]
+ == "json_object"
+ and "response_schema"
+ in optional_params["response_format"]
+ and isinstance(
+ optional_params["response_format"][
+ "response_schema"
+ ],
+ dict,
+ )
+ and "enforce_validation"
+ in optional_params["response_format"]
+ and optional_params["response_format"][
+ "enforce_validation"
+ ]
+ is True
+ ):
+ # schema given, json response expected, and validation enforced
+ litellm.litellm_core_utils.json_validation_rule.validate_schema(
+ schema=optional_params["response_format"][
+ "response_schema"
+ ],
+ response=model_response,
+ )
+
+ except Exception as e:
+ raise e
+
+ @wraps(original_function)
+ def wrapper(*args, **kwargs): # noqa: PLR0915
+ # DO NOT MOVE THIS. It always needs to run first
+ # Check if this is an async function. If so only execute the async function
+ call_type = original_function.__name__
+ if _is_async_request(kwargs):
+ # [OPTIONAL] CHECK MAX RETRIES / REQUEST
+ if litellm.num_retries_per_request is not None:
+ # check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
+ previous_models = kwargs.get("metadata", {}).get(
+ "previous_models", None
+ )
+ if previous_models is not None:
+ if litellm.num_retries_per_request <= len(previous_models):
+ raise Exception("Max retries per request hit!")
+
+ # MODEL CALL
+ result = original_function(*args, **kwargs)
+ if "stream" in kwargs and kwargs["stream"] is True:
+ if (
+ "complete_response" in kwargs
+ and kwargs["complete_response"] is True
+ ):
+ chunks = []
+ for idx, chunk in enumerate(result):
+ chunks.append(chunk)
+ return litellm.stream_chunk_builder(
+ chunks, messages=kwargs.get("messages", None)
+ )
+ else:
+ return result
+
+ return result
+
+ # Prints Exactly what was passed to litellm function - don't execute any logic here - it should just print
+ print_args_passed_to_litellm(original_function, args, kwargs)
+ start_time = datetime.datetime.now()
+ result = None
+ logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
+ "litellm_logging_obj", None
+ )
+
+ # only set litellm_call_id if its not in kwargs
+ if "litellm_call_id" not in kwargs:
+ kwargs["litellm_call_id"] = str(uuid.uuid4())
+
+ model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
+
+ try:
+ if logging_obj is None:
+ logging_obj, kwargs = function_setup(
+ original_function.__name__, rules_obj, start_time, *args, **kwargs
+ )
+ ## LOAD CREDENTIALS
+ load_credentials_from_list(kwargs)
+ kwargs["litellm_logging_obj"] = logging_obj
+ _llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
+ original_function=original_function,
+ request_kwargs=kwargs,
+ start_time=start_time,
+ )
+ logging_obj._llm_caching_handler = _llm_caching_handler
+
+ # CHECK FOR 'os.environ/' in kwargs
+ for k, v in kwargs.items():
+ if v is not None and isinstance(v, str) and v.startswith("os.environ/"):
+ kwargs[k] = litellm.get_secret(v)
+ # [OPTIONAL] CHECK BUDGET
+ if litellm.max_budget:
+ if litellm._current_cost > litellm.max_budget:
+ raise BudgetExceededError(
+ current_cost=litellm._current_cost,
+ max_budget=litellm.max_budget,
+ )
+
+ # [OPTIONAL] CHECK MAX RETRIES / REQUEST
+ if litellm.num_retries_per_request is not None:
+ # check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
+ previous_models = kwargs.get("metadata", {}).get(
+ "previous_models", None
+ )
+ if previous_models is not None:
+ if litellm.num_retries_per_request <= len(previous_models):
+ raise Exception("Max retries per request hit!")
+
+ # [OPTIONAL] CHECK CACHE
+ print_verbose(
+ f"SYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache')['no-cache']: {kwargs.get('cache', {}).get('no-cache', False)}"
+ )
+ # if caching is false or cache["no-cache"]==True, don't run this
+ if (
+ (
+ (
+ (
+ kwargs.get("caching", None) is None
+ and litellm.cache is not None
+ )
+ or kwargs.get("caching", False) is True
+ )
+ and kwargs.get("cache", {}).get("no-cache", False) is not True
+ )
+ and kwargs.get("aembedding", False) is not True
+ and kwargs.get("atext_completion", False) is not True
+ and kwargs.get("acompletion", False) is not True
+ and kwargs.get("aimg_generation", False) is not True
+ and kwargs.get("atranscription", False) is not True
+ and kwargs.get("arerank", False) is not True
+ and kwargs.get("_arealtime", False) is not True
+ ): # allow users to control returning cached responses from the completion function
+ # checking cache
+ verbose_logger.debug("INSIDE CHECKING SYNC CACHE")
+ caching_handler_response: CachingHandlerResponse = (
+ _llm_caching_handler._sync_get_cache(
+ model=model or "",
+ original_function=original_function,
+ logging_obj=logging_obj,
+ start_time=start_time,
+ call_type=call_type,
+ kwargs=kwargs,
+ args=args,
+ )
+ )
+
+ if caching_handler_response.cached_result is not None:
+ verbose_logger.debug("Cache hit!")
+ return caching_handler_response.cached_result
+
+ # CHECK MAX TOKENS
+ if (
+ kwargs.get("max_tokens", None) is not None
+ and model is not None
+ and litellm.modify_params
+ is True # user is okay with params being modified
+ and (
+ call_type == CallTypes.acompletion.value
+ or call_type == CallTypes.completion.value
+ )
+ ):
+ try:
+ base_model = model
+ if kwargs.get("hf_model_name", None) is not None:
+ base_model = f"huggingface/{kwargs.get('hf_model_name')}"
+ messages = None
+ if len(args) > 1:
+ messages = args[1]
+ elif kwargs.get("messages", None):
+ messages = kwargs["messages"]
+ user_max_tokens = kwargs.get("max_tokens")
+ modified_max_tokens = get_modified_max_tokens(
+ model=model,
+ base_model=base_model,
+ messages=messages,
+ user_max_tokens=user_max_tokens,
+ buffer_num=None,
+ buffer_perc=None,
+ )
+ kwargs["max_tokens"] = modified_max_tokens
+ except Exception as e:
+ print_verbose(f"Error while checking max token limit: {str(e)}")
+ # MODEL CALL
+ result = original_function(*args, **kwargs)
+ end_time = datetime.datetime.now()
+ if "stream" in kwargs and kwargs["stream"] is True:
+ if (
+ "complete_response" in kwargs
+ and kwargs["complete_response"] is True
+ ):
+ chunks = []
+ for idx, chunk in enumerate(result):
+ chunks.append(chunk)
+ return litellm.stream_chunk_builder(
+ chunks, messages=kwargs.get("messages", None)
+ )
+ else:
+ # RETURN RESULT
+ update_response_metadata(
+ result=result,
+ logging_obj=logging_obj,
+ model=model,
+ kwargs=kwargs,
+ start_time=start_time,
+ end_time=end_time,
+ )
+ return result
+ elif "acompletion" in kwargs and kwargs["acompletion"] is True:
+ return result
+ elif "aembedding" in kwargs and kwargs["aembedding"] is True:
+ return result
+ elif "aimg_generation" in kwargs and kwargs["aimg_generation"] is True:
+ return result
+ elif "atranscription" in kwargs and kwargs["atranscription"] is True:
+ return result
+ elif "aspeech" in kwargs and kwargs["aspeech"] is True:
+ return result
+ elif asyncio.iscoroutine(result): # bubble up to relevant async function
+ return result
+
+ ### POST-CALL RULES ###
+ post_call_processing(
+ original_response=result,
+ model=model or None,
+ optional_params=kwargs,
+ )
+
+ # [OPTIONAL] ADD TO CACHE
+ _llm_caching_handler.sync_set_cache(
+ result=result,
+ args=args,
+ kwargs=kwargs,
+ )
+
+ # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
+ verbose_logger.info("Wrapper: Completed Call, calling success_handler")
+ executor.submit(
+ logging_obj.success_handler,
+ result,
+ start_time,
+ end_time,
+ )
+ # RETURN RESULT
+ update_response_metadata(
+ result=result,
+ logging_obj=logging_obj,
+ model=model,
+ kwargs=kwargs,
+ start_time=start_time,
+ end_time=end_time,
+ )
+ return result
+ except Exception as e:
+ call_type = original_function.__name__
+ if call_type == CallTypes.completion.value:
+ num_retries = (
+ kwargs.get("num_retries", None) or litellm.num_retries or None
+ )
+ if kwargs.get("retry_policy", None):
+ num_retries = get_num_retries_from_retry_policy(
+ exception=e,
+ retry_policy=kwargs.get("retry_policy"),
+ )
+ kwargs["retry_policy"] = (
+ reset_retry_policy()
+ ) # prevent infinite loops
+ litellm.num_retries = (
+ None # set retries to None to prevent infinite loops
+ )
+ context_window_fallback_dict = kwargs.get(
+ "context_window_fallback_dict", {}
+ )
+
+ _is_litellm_router_call = "model_group" in kwargs.get(
+ "metadata", {}
+ ) # check if call from litellm.router/proxy
+ if (
+ num_retries and not _is_litellm_router_call
+ ): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
+ if (
+ isinstance(e, openai.APIError)
+ or isinstance(e, openai.Timeout)
+ or isinstance(e, openai.APIConnectionError)
+ ):
+ kwargs["num_retries"] = num_retries
+ return litellm.completion_with_retries(*args, **kwargs)
+ elif (
+ isinstance(e, litellm.exceptions.ContextWindowExceededError)
+ and context_window_fallback_dict
+ and model in context_window_fallback_dict
+ and not _is_litellm_router_call
+ ):
+ if len(args) > 0:
+ args[0] = context_window_fallback_dict[model] # type: ignore
+ else:
+ kwargs["model"] = context_window_fallback_dict[model]
+ return original_function(*args, **kwargs)
+ traceback_exception = traceback.format_exc()
+ end_time = datetime.datetime.now()
+
+ # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
+ if logging_obj:
+ logging_obj.failure_handler(
+ e, traceback_exception, start_time, end_time
+ ) # DO NOT MAKE THREADED - router retry fallback relies on this!
+ raise e
+
+ @wraps(original_function)
+ async def wrapper_async(*args, **kwargs): # noqa: PLR0915
+ print_args_passed_to_litellm(original_function, args, kwargs)
+ start_time = datetime.datetime.now()
+ result = None
+ logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
+ "litellm_logging_obj", None
+ )
+ _llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
+ original_function=original_function,
+ request_kwargs=kwargs,
+ start_time=start_time,
+ )
+ # only set litellm_call_id if its not in kwargs
+ call_type = original_function.__name__
+ if "litellm_call_id" not in kwargs:
+ kwargs["litellm_call_id"] = str(uuid.uuid4())
+
+ model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
+ is_completion_with_fallbacks = kwargs.get("fallbacks") is not None
+
+ try:
+ if logging_obj is None:
+ logging_obj, kwargs = function_setup(
+ original_function.__name__, rules_obj, start_time, *args, **kwargs
+ )
+ kwargs["litellm_logging_obj"] = logging_obj
+ ## LOAD CREDENTIALS
+ load_credentials_from_list(kwargs)
+ logging_obj._llm_caching_handler = _llm_caching_handler
+ # [OPTIONAL] CHECK BUDGET
+ if litellm.max_budget:
+ if litellm._current_cost > litellm.max_budget:
+ raise BudgetExceededError(
+ current_cost=litellm._current_cost,
+ max_budget=litellm.max_budget,
+ )
+
+ # [OPTIONAL] CHECK CACHE
+ print_verbose(
+ f"ASYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache'): {kwargs.get('cache', None)}"
+ )
+ _caching_handler_response: CachingHandlerResponse = (
+ await _llm_caching_handler._async_get_cache(
+ model=model or "",
+ original_function=original_function,
+ logging_obj=logging_obj,
+ start_time=start_time,
+ call_type=call_type,
+ kwargs=kwargs,
+ args=args,
+ )
+ )
+ if (
+ _caching_handler_response.cached_result is not None
+ and _caching_handler_response.final_embedding_cached_response is None
+ ):
+ return _caching_handler_response.cached_result
+
+ elif _caching_handler_response.embedding_all_elements_cache_hit is True:
+ return _caching_handler_response.final_embedding_cached_response
+
+ # MODEL CALL
+ result = await original_function(*args, **kwargs)
+ end_time = datetime.datetime.now()
+ if "stream" in kwargs and kwargs["stream"] is True:
+ if (
+ "complete_response" in kwargs
+ and kwargs["complete_response"] is True
+ ):
+ chunks = []
+ for idx, chunk in enumerate(result):
+ chunks.append(chunk)
+ return litellm.stream_chunk_builder(
+ chunks, messages=kwargs.get("messages", None)
+ )
+ else:
+ update_response_metadata(
+ result=result,
+ logging_obj=logging_obj,
+ model=model,
+ kwargs=kwargs,
+ start_time=start_time,
+ end_time=end_time,
+ )
+ return result
+ elif call_type == CallTypes.arealtime.value:
+ return result
+ ### POST-CALL RULES ###
+ post_call_processing(
+ original_response=result, model=model, optional_params=kwargs
+ )
+
+ ## Add response to cache
+ await _llm_caching_handler.async_set_cache(
+ result=result,
+ original_function=original_function,
+ kwargs=kwargs,
+ args=args,
+ )
+
+ # LOG SUCCESS - handle streaming success logging in the _next_ object
+ asyncio.create_task(
+ _client_async_logging_helper(
+ logging_obj=logging_obj,
+ result=result,
+ start_time=start_time,
+ end_time=end_time,
+ is_completion_with_fallbacks=is_completion_with_fallbacks,
+ )
+ )
+ logging_obj.handle_sync_success_callbacks_for_async_calls(
+ result=result,
+ start_time=start_time,
+ end_time=end_time,
+ )
+ # REBUILD EMBEDDING CACHING
+ if (
+ isinstance(result, EmbeddingResponse)
+ and _caching_handler_response.final_embedding_cached_response
+ is not None
+ ):
+ return _llm_caching_handler._combine_cached_embedding_response_with_api_result(
+ _caching_handler_response=_caching_handler_response,
+ embedding_response=result,
+ start_time=start_time,
+ end_time=end_time,
+ )
+
+ update_response_metadata(
+ result=result,
+ logging_obj=logging_obj,
+ model=model,
+ kwargs=kwargs,
+ start_time=start_time,
+ end_time=end_time,
+ )
+
+ return result
+ except Exception as e:
+ traceback_exception = traceback.format_exc()
+ end_time = datetime.datetime.now()
+ if logging_obj:
+ try:
+ logging_obj.failure_handler(
+ e, traceback_exception, start_time, end_time
+ ) # DO NOT MAKE THREADED - router retry fallback relies on this!
+ except Exception as e:
+ raise e
+ try:
+ await logging_obj.async_failure_handler(
+ e, traceback_exception, start_time, end_time
+ )
+ except Exception as e:
+ raise e
+
+ call_type = original_function.__name__
+ num_retries, kwargs = _get_wrapper_num_retries(kwargs=kwargs, exception=e)
+ if call_type == CallTypes.acompletion.value:
+ context_window_fallback_dict = kwargs.get(
+ "context_window_fallback_dict", {}
+ )
+
+ _is_litellm_router_call = "model_group" in kwargs.get(
+ "metadata", {}
+ ) # check if call from litellm.router/proxy
+
+ if (
+ num_retries and not _is_litellm_router_call
+ ): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
+
+ try:
+ litellm.num_retries = (
+ None # set retries to None to prevent infinite loops
+ )
+ kwargs["num_retries"] = num_retries
+ kwargs["original_function"] = original_function
+ if isinstance(
+ e, openai.RateLimitError
+ ): # rate limiting specific error
+ kwargs["retry_strategy"] = "exponential_backoff_retry"
+ elif isinstance(e, openai.APIError): # generic api error
+ kwargs["retry_strategy"] = "constant_retry"
+ return await litellm.acompletion_with_retries(*args, **kwargs)
+ except Exception:
+ pass
+ elif (
+ isinstance(e, litellm.exceptions.ContextWindowExceededError)
+ and context_window_fallback_dict
+ and model in context_window_fallback_dict
+ ):
+
+ if len(args) > 0:
+ args[0] = context_window_fallback_dict[model] # type: ignore
+ else:
+ kwargs["model"] = context_window_fallback_dict[model]
+ return await original_function(*args, **kwargs)
+
+ setattr(
+ e, "num_retries", num_retries
+ ) ## IMPORTANT: returns the deployment's num_retries to the router
+
+ timeout = _get_wrapper_timeout(kwargs=kwargs, exception=e)
+ setattr(e, "timeout", timeout)
+ raise e
+
+ is_coroutine = inspect.iscoroutinefunction(original_function)
+
+ # Return the appropriate wrapper based on the original function type
+ if is_coroutine:
+ return wrapper_async
+ else:
+ return wrapper
+
+
+def _is_async_request(
+ kwargs: Optional[dict],
+ is_pass_through: bool = False,
+) -> bool:
+ """
+ Returns True if the call type is an internal async request.
+
+ eg. litellm.acompletion, litellm.aimage_generation, litellm.acreate_batch, litellm._arealtime
+
+ Args:
+ kwargs (dict): The kwargs passed to the litellm function
+ is_pass_through (bool): Whether the call is a pass-through call. By default all pass through calls are async.
+ """
+ if kwargs is None:
+ return False
+ if (
+ kwargs.get("acompletion", False) is True
+ or kwargs.get("aembedding", False) is True
+ or kwargs.get("aimg_generation", False) is True
+ or kwargs.get("amoderation", False) is True
+ or kwargs.get("atext_completion", False) is True
+ or kwargs.get("atranscription", False) is True
+ or kwargs.get("arerank", False) is True
+ or kwargs.get("_arealtime", False) is True
+ or kwargs.get("acreate_batch", False) is True
+ or kwargs.get("acreate_fine_tuning_job", False) is True
+ or is_pass_through is True
+ ):
+ return True
+ return False
+
+
+def update_response_metadata(
+ result: Any,
+ logging_obj: LiteLLMLoggingObject,
+ model: Optional[str],
+ kwargs: dict,
+ start_time: datetime.datetime,
+ end_time: datetime.datetime,
+) -> None:
+ """
+ Updates response metadata, adds the following:
+ - response._hidden_params
+ - response._hidden_params["litellm_overhead_time_ms"]
+ - response.response_time_ms
+ """
+ if result is None:
+ return
+
+ metadata = ResponseMetadata(result)
+ metadata.set_hidden_params(logging_obj=logging_obj, model=model, kwargs=kwargs)
+ metadata.set_timing_metrics(
+ start_time=start_time, end_time=end_time, logging_obj=logging_obj
+ )
+ metadata.apply()
+
+
+def _select_tokenizer(
+ model: str, custom_tokenizer: Optional[CustomHuggingfaceTokenizer] = None
+):
+ if custom_tokenizer is not None:
+ _tokenizer = create_pretrained_tokenizer(
+ identifier=custom_tokenizer["identifier"],
+ revision=custom_tokenizer["revision"],
+ auth_token=custom_tokenizer["auth_token"],
+ )
+ return _tokenizer
+ return _select_tokenizer_helper(model=model)
+
+
+@lru_cache(maxsize=128)
+def _select_tokenizer_helper(model: str) -> SelectTokenizerResponse:
+
+ if litellm.disable_hf_tokenizer_download is True:
+ return _return_openai_tokenizer(model)
+
+ try:
+ result = _return_huggingface_tokenizer(model)
+ if result is not None:
+ return result
+ except Exception as e:
+ verbose_logger.debug(f"Error selecting tokenizer: {e}")
+
+ # default - tiktoken
+ return _return_openai_tokenizer(model)
+
+
+def _return_openai_tokenizer(model: str) -> SelectTokenizerResponse:
+ return {"type": "openai_tokenizer", "tokenizer": encoding}
+
+
+def _return_huggingface_tokenizer(model: str) -> Optional[SelectTokenizerResponse]:
+ if model in litellm.cohere_models and "command-r" in model:
+ # cohere
+ cohere_tokenizer = Tokenizer.from_pretrained(
+ "Xenova/c4ai-command-r-v01-tokenizer"
+ )
+ return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer}
+ # anthropic
+ elif model in litellm.anthropic_models and "claude-3" not in model:
+ claude_tokenizer = Tokenizer.from_str(claude_json_str)
+ return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer}
+ # llama2
+ elif "llama-2" in model.lower() or "replicate" in model.lower():
+ tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
+ return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+ # llama3
+ elif "llama-3" in model.lower():
+ tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
+ return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+ else:
+ return None
+
+
+def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
+ """
+ Encodes the given text using the specified model.
+
+ Args:
+ model (str): The name of the model to use for tokenization.
+ custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
+ text (str): The text to be encoded.
+
+ Returns:
+ enc: The encoded text.
+ """
+ tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
+ if isinstance(tokenizer_json["tokenizer"], Encoding):
+ enc = tokenizer_json["tokenizer"].encode(text, disallowed_special=())
+ else:
+ enc = tokenizer_json["tokenizer"].encode(text)
+ return enc
+
+
+def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
+ tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
+ dec = tokenizer_json["tokenizer"].decode(tokens)
+ return dec
+
+
+def openai_token_counter( # noqa: PLR0915
+ messages: Optional[list] = None,
+ model="gpt-3.5-turbo-0613",
+ text: Optional[str] = None,
+ is_tool_call: Optional[bool] = False,
+ tools: Optional[List[ChatCompletionToolParam]] = None,
+ tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
+ count_response_tokens: Optional[
+ bool
+ ] = False, # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter
+ use_default_image_token_count: Optional[bool] = False,
+ default_token_count: Optional[int] = None,
+):
+ """
+ Return the number of tokens used by a list of messages.
+
+ Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb.
+ """
+ print_verbose(f"LiteLLM: Utils - Counting tokens for OpenAI model={model}")
+ try:
+ if "gpt-4o" in model:
+ encoding = tiktoken.get_encoding("o200k_base")
+ else:
+ encoding = tiktoken.encoding_for_model(model)
+ except KeyError:
+ print_verbose("Warning: model not found. Using cl100k_base encoding.")
+ encoding = tiktoken.get_encoding("cl100k_base")
+ if model == "gpt-3.5-turbo-0301":
+ tokens_per_message = (
+ 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
+ )
+ tokens_per_name = -1 # if there's a name, the role is omitted
+ elif model in litellm.open_ai_chat_completion_models:
+ tokens_per_message = 3
+ tokens_per_name = 1
+ elif model in litellm.azure_llms:
+ tokens_per_message = 3
+ tokens_per_name = 1
+ else:
+ raise NotImplementedError(
+ f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
+ )
+ num_tokens = 0
+ includes_system_message = False
+
+ if is_tool_call and text is not None:
+ # if it's a tool call we assembled 'text' in token_counter()
+ num_tokens = len(encoding.encode(text, disallowed_special=()))
+ elif messages is not None:
+ for message in messages:
+ num_tokens += tokens_per_message
+ if message.get("role", None) == "system":
+ includes_system_message = True
+ for key, value in message.items():
+ if isinstance(value, str):
+ num_tokens += len(encoding.encode(value, disallowed_special=()))
+ if key == "name":
+ num_tokens += tokens_per_name
+ elif isinstance(value, List):
+ text, num_tokens_from_list = _get_num_tokens_from_content_list(
+ content_list=value,
+ use_default_image_token_count=use_default_image_token_count,
+ default_token_count=default_token_count,
+ )
+ num_tokens += num_tokens_from_list
+ elif text is not None and count_response_tokens is True:
+ # This is the case where we need to count tokens for a streamed response. We should NOT add +3 tokens per message in this branch
+ num_tokens = len(encoding.encode(text, disallowed_special=()))
+ return num_tokens
+ elif text is not None:
+ num_tokens = len(encoding.encode(text, disallowed_special=()))
+ num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
+
+ if tools:
+ num_tokens += len(encoding.encode(_format_function_definitions(tools)))
+ num_tokens += 9 # Additional tokens for function definition of tools
+ # If there's a system message and tools are present, subtract four tokens
+ if tools and includes_system_message:
+ num_tokens -= 4
+ # If tool_choice is 'none', add one token.
+ # If it's an object, add 4 + the number of tokens in the function name.
+ # If it's undefined or 'auto', don't add anything.
+ if tool_choice == "none":
+ num_tokens += 1
+ elif isinstance(tool_choice, dict):
+ num_tokens += 7
+ num_tokens += len(encoding.encode(tool_choice["function"]["name"]))
+
+ return num_tokens
+
+
+def create_pretrained_tokenizer(
+ identifier: str, revision="main", auth_token: Optional[str] = None
+):
+ """
+ Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
+
+ Args:
+ identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
+ revision (str, defaults to main): A branch or commit id
+ auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
+
+ Returns:
+ dict: A dictionary with the tokenizer and its type.
+ """
+
+ try:
+ tokenizer = Tokenizer.from_pretrained(
+ identifier, revision=revision, auth_token=auth_token # type: ignore
+ )
+ except Exception as e:
+ verbose_logger.error(
+ f"Error creating pretrained tokenizer: {e}. Defaulting to version without 'auth_token'."
+ )
+ tokenizer = Tokenizer.from_pretrained(identifier, revision=revision)
+ return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+
+
+def create_tokenizer(json: str):
+ """
+ Creates a tokenizer from a valid JSON string for use with `token_counter`.
+
+ Args:
+ json (str): A valid JSON string representing a previously serialized tokenizer
+
+ Returns:
+ dict: A dictionary with the tokenizer and its type.
+ """
+
+ tokenizer = Tokenizer.from_str(json)
+ return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
+
+
+def _format_function_definitions(tools):
+ """Formats tool definitions in the format that OpenAI appears to use.
+ Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java
+ """
+ lines = []
+ lines.append("namespace functions {")
+ lines.append("")
+ for tool in tools:
+ function = tool.get("function")
+ if function_description := function.get("description"):
+ lines.append(f"// {function_description}")
+ function_name = function.get("name")
+ parameters = function.get("parameters", {})
+ properties = parameters.get("properties")
+ if properties and properties.keys():
+ lines.append(f"type {function_name} = (_: {{")
+ lines.append(_format_object_parameters(parameters, 0))
+ lines.append("}) => any;")
+ else:
+ lines.append(f"type {function_name} = () => any;")
+ lines.append("")
+ lines.append("} // namespace functions")
+ return "\n".join(lines)
+
+
+def _format_object_parameters(parameters, indent):
+ properties = parameters.get("properties")
+ if not properties:
+ return ""
+ required_params = parameters.get("required", [])
+ lines = []
+ for key, props in properties.items():
+ description = props.get("description")
+ if description:
+ lines.append(f"// {description}")
+ question = "?"
+ if required_params and key in required_params:
+ question = ""
+ lines.append(f"{key}{question}: {_format_type(props, indent)},")
+ return "\n".join([" " * max(0, indent) + line for line in lines])
+
+
+def _format_type(props, indent):
+ type = props.get("type")
+ if type == "string":
+ if "enum" in props:
+ return " | ".join([f'"{item}"' for item in props["enum"]])
+ return "string"
+ elif type == "array":
+ # items is required, OpenAI throws an error if it's missing
+ return f"{_format_type(props['items'], indent)}[]"
+ elif type == "object":
+ return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}"
+ elif type in ["integer", "number"]:
+ if "enum" in props:
+ return " | ".join([f'"{item}"' for item in props["enum"]])
+ return "number"
+ elif type == "boolean":
+ return "boolean"
+ elif type == "null":
+ return "null"
+ else:
+ # This is a guess, as an empty string doesn't yield the expected token count
+ return "any"
+
+
+def _get_num_tokens_from_content_list(
+ content_list: List[Dict[str, Any]],
+ use_default_image_token_count: Optional[bool] = False,
+ default_token_count: Optional[int] = None,
+) -> Tuple[str, int]:
+ """
+ Get the number of tokens from a list of content.
+
+ Returns:
+ Tuple[str, int]: A tuple containing the text and the number of tokens.
+ """
+ try:
+ num_tokens = 0
+ text = ""
+ for c in content_list:
+ if c["type"] == "text":
+ text += c["text"]
+ num_tokens += len(encoding.encode(c["text"], disallowed_special=()))
+ elif c["type"] == "image_url":
+ if isinstance(c["image_url"], dict):
+ image_url_dict = c["image_url"]
+ detail = image_url_dict.get("detail", "auto")
+ url = image_url_dict.get("url")
+ num_tokens += calculate_img_tokens(
+ data=url,
+ mode=detail,
+ use_default_image_token_count=use_default_image_token_count
+ or False,
+ )
+ elif isinstance(c["image_url"], str):
+ image_url_str = c["image_url"]
+ num_tokens += calculate_img_tokens(
+ data=image_url_str,
+ mode="auto",
+ use_default_image_token_count=use_default_image_token_count
+ or False,
+ )
+ return text, num_tokens
+ except Exception as e:
+ if default_token_count is not None:
+ return "", default_token_count
+ raise ValueError(
+ f"Error getting number of tokens from content list: {e}, default_token_count={default_token_count}"
+ )
+
+
+def token_counter(
+ model="",
+ custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None,
+ text: Optional[Union[str, List[str]]] = None,
+ messages: Optional[List] = None,
+ count_response_tokens: Optional[bool] = False,
+ tools: Optional[List[ChatCompletionToolParam]] = None,
+ tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
+ use_default_image_token_count: Optional[bool] = False,
+ default_token_count: Optional[int] = None,
+) -> int:
+ """
+ Count the number of tokens in a given text using a specified model.
+
+ Args:
+ model (str): The name of the model to use for tokenization. Default is an empty string.
+ custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
+ text (str): The raw text string to be passed to the model. Default is None.
+ messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
+ default_token_count (Optional[int]): The default number of tokens to return for a message block, if an error occurs. Default is None.
+
+ Returns:
+ int: The number of tokens in the text.
+ """
+ # use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
+ is_tool_call = False
+ num_tokens = 0
+ if text is None:
+ if messages is not None:
+ print_verbose(f"token_counter messages received: {messages}")
+ text = ""
+ for message in messages:
+ if message.get("content", None) is not None:
+ content = message.get("content")
+ if isinstance(content, str):
+ text += message["content"]
+ elif isinstance(content, List):
+ text, num_tokens = _get_num_tokens_from_content_list(
+ content_list=content,
+ use_default_image_token_count=use_default_image_token_count,
+ default_token_count=default_token_count,
+ )
+ if message.get("tool_calls"):
+ is_tool_call = True
+ for tool_call in message["tool_calls"]:
+ if "function" in tool_call:
+ function_arguments = tool_call["function"]["arguments"]
+ text = (
+ text if isinstance(text, str) else "".join(text or [])
+ ) + (str(function_arguments) if function_arguments else "")
+
+ else:
+ raise ValueError("text and messages cannot both be None")
+ elif isinstance(text, List):
+ text = "".join(t for t in text if isinstance(t, str))
+ elif isinstance(text, str):
+ count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
+
+ if model is not None or custom_tokenizer is not None:
+ tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
+ if tokenizer_json["type"] == "huggingface_tokenizer":
+ enc = tokenizer_json["tokenizer"].encode(text)
+ num_tokens = len(enc.ids)
+ elif tokenizer_json["type"] == "openai_tokenizer":
+ if (
+ model in litellm.open_ai_chat_completion_models
+ or model in litellm.azure_llms
+ ):
+ if model in litellm.azure_llms:
+ # azure llms use gpt-35-turbo instead of gpt-3.5-turbo 🙃
+ model = model.replace("-35", "-3.5")
+
+ print_verbose(
+ f"Token Counter - using OpenAI token counter, for model={model}"
+ )
+ num_tokens = openai_token_counter(
+ text=text, # type: ignore
+ model=model,
+ messages=messages,
+ is_tool_call=is_tool_call,
+ count_response_tokens=count_response_tokens,
+ tools=tools,
+ tool_choice=tool_choice,
+ use_default_image_token_count=use_default_image_token_count
+ or False,
+ default_token_count=default_token_count,
+ )
+ else:
+ print_verbose(
+ f"Token Counter - using generic token counter, for model={model}"
+ )
+ num_tokens = openai_token_counter(
+ text=text, # type: ignore
+ model="gpt-3.5-turbo",
+ messages=messages,
+ is_tool_call=is_tool_call,
+ count_response_tokens=count_response_tokens,
+ tools=tools,
+ tool_choice=tool_choice,
+ use_default_image_token_count=use_default_image_token_count
+ or False,
+ default_token_count=default_token_count,
+ )
+ else:
+ num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
+ return num_tokens
+
+
+def supports_httpx_timeout(custom_llm_provider: str) -> bool:
+ """
+ Helper function to know if a provider implementation supports httpx timeout
+ """
+ supported_providers = ["openai", "azure", "bedrock"]
+
+ if custom_llm_provider in supported_providers:
+ return True
+
+ return False
+
+
+def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool:
+ """
+ Check if the given model supports system messages and return a boolean value.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (str): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports system messages, False otherwise.
+
+ Raises:
+ Exception: If the given model is not found in model_prices_and_context_window.json.
+ """
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_system_messages",
+ )
+
+
+def supports_native_streaming(model: str, custom_llm_provider: Optional[str]) -> bool:
+ """
+ Check if the given model supports native streaming and return a boolean value.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (str): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports native streaming, False otherwise.
+
+ Raises:
+ Exception: If the given model is not found in model_prices_and_context_window.json.
+ """
+ try:
+ model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ model_info = _get_model_info_helper(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ supports_native_streaming = model_info.get("supports_native_streaming", True)
+ if supports_native_streaming is None:
+ supports_native_streaming = True
+ return supports_native_streaming
+ except Exception as e:
+ verbose_logger.debug(
+ f"Model not found or error in checking supports_native_streaming support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
+ )
+ return False
+
+
+def supports_response_schema(
+ model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+ """
+ Check if the given model + provider supports 'response_schema' as a param.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (str): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports response_schema, False otherwise.
+
+ Does not raise error. Defaults to 'False'. Outputs logging.error.
+ """
+ ## GET LLM PROVIDER ##
+ try:
+ model, custom_llm_provider, _, _ = get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ except Exception as e:
+ verbose_logger.debug(
+ f"Model not found or error in checking response schema support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
+ )
+ return False
+
+ # providers that globally support response schema
+ PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA = [
+ litellm.LlmProviders.PREDIBASE,
+ litellm.LlmProviders.FIREWORKS_AI,
+ ]
+
+ if custom_llm_provider in PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA:
+ return True
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_response_schema",
+ )
+
+
+def supports_parallel_function_calling(
+ model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+ """
+ Check if the given model supports parallel tool calls and return a boolean value.
+ """
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_parallel_function_calling",
+ )
+
+
+def supports_function_calling(
+ model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+ """
+ Check if the given model supports function calling and return a boolean value.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (Optional[str]): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports function calling, False otherwise.
+
+ Raises:
+ Exception: If the given model is not found or there's an error in retrieval.
+ """
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_function_calling",
+ )
+
+
+def supports_tool_choice(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+ """
+ Check if the given model supports `tool_choice` and return a boolean value.
+ """
+ return _supports_factory(
+ model=model, custom_llm_provider=custom_llm_provider, key="supports_tool_choice"
+ )
+
+
+def _supports_factory(model: str, custom_llm_provider: Optional[str], key: str) -> bool:
+ """
+ Check if the given model supports function calling and return a boolean value.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (Optional[str]): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports function calling, False otherwise.
+
+ Raises:
+ Exception: If the given model is not found or there's an error in retrieval.
+ """
+ try:
+ model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ model_info = _get_model_info_helper(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ if model_info.get(key, False) is True:
+ return True
+ return False
+ except Exception as e:
+ verbose_logger.debug(
+ f"Model not found or error in checking {key} support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
+ )
+
+ provider_info = get_provider_info(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ if provider_info is not None and provider_info.get(key, False) is True:
+ return True
+ return False
+
+
+def supports_audio_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+ """Check if a given model supports audio input in a chat completion call"""
+ return _supports_factory(
+ model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
+ )
+
+
+def supports_pdf_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+ """Check if a given model supports pdf input in a chat completion call"""
+ return _supports_factory(
+ model=model, custom_llm_provider=custom_llm_provider, key="supports_pdf_input"
+ )
+
+
+def supports_audio_output(
+ model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+ """Check if a given model supports audio output in a chat completion call"""
+ return _supports_factory(
+ model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
+ )
+
+
+def supports_prompt_caching(
+ model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+ """
+ Check if the given model supports prompt caching and return a boolean value.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (Optional[str]): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports prompt caching, False otherwise.
+
+ Raises:
+ Exception: If the given model is not found or there's an error in retrieval.
+ """
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_prompt_caching",
+ )
+
+
+def supports_vision(model: str, custom_llm_provider: Optional[str] = None) -> bool:
+ """
+ Check if the given model supports vision and return a boolean value.
+
+ Parameters:
+ model (str): The model name to be checked.
+ custom_llm_provider (Optional[str]): The provider to be checked.
+
+ Returns:
+ bool: True if the model supports vision, False otherwise.
+ """
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_vision",
+ )
+
+
+def supports_embedding_image_input(
+ model: str, custom_llm_provider: Optional[str] = None
+) -> bool:
+ """
+ Check if the given model supports embedding image input and return a boolean value.
+ """
+ return _supports_factory(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ key="supports_embedding_image_input",
+ )
+
+
+####### HELPER FUNCTIONS ################
+def _update_dictionary(existing_dict: Dict, new_dict: dict) -> dict:
+ for k, v in new_dict.items():
+ existing_dict[k] = v
+
+ return existing_dict
+
+
+def register_model(model_cost: Union[str, dict]): # noqa: PLR0915
+ """
+ Register new / Override existing models (and their pricing) to specific providers.
+ Provide EITHER a model cost dictionary or a url to a hosted json blob
+ Example usage:
+ model_cost_dict = {
+ "gpt-4": {
+ "max_tokens": 8192,
+ "input_cost_per_token": 0.00003,
+ "output_cost_per_token": 0.00006,
+ "litellm_provider": "openai",
+ "mode": "chat"
+ },
+ }
+ """
+
+ loaded_model_cost = {}
+ if isinstance(model_cost, dict):
+ loaded_model_cost = model_cost
+ elif isinstance(model_cost, str):
+ loaded_model_cost = litellm.get_model_cost_map(url=model_cost)
+
+ for key, value in loaded_model_cost.items():
+ ## get model info ##
+ try:
+ existing_model: dict = cast(dict, get_model_info(model=key))
+ model_cost_key = existing_model["key"]
+ except Exception:
+ existing_model = {}
+ model_cost_key = key
+ ## override / add new keys to the existing model cost dictionary
+ updated_dictionary = _update_dictionary(existing_model, value)
+ litellm.model_cost.setdefault(model_cost_key, {}).update(updated_dictionary)
+ verbose_logger.debug(
+ f"added/updated model={model_cost_key} in litellm.model_cost: {model_cost_key}"
+ )
+ # add new model names to provider lists
+ if value.get("litellm_provider") == "openai":
+ if key not in litellm.open_ai_chat_completion_models:
+ litellm.open_ai_chat_completion_models.append(key)
+ elif value.get("litellm_provider") == "text-completion-openai":
+ if key not in litellm.open_ai_text_completion_models:
+ litellm.open_ai_text_completion_models.append(key)
+ elif value.get("litellm_provider") == "cohere":
+ if key not in litellm.cohere_models:
+ litellm.cohere_models.append(key)
+ elif value.get("litellm_provider") == "anthropic":
+ if key not in litellm.anthropic_models:
+ litellm.anthropic_models.append(key)
+ elif value.get("litellm_provider") == "openrouter":
+ split_string = key.split("/", 1)
+ if key not in litellm.openrouter_models:
+ litellm.openrouter_models.append(split_string[1])
+ elif value.get("litellm_provider") == "vertex_ai-text-models":
+ if key not in litellm.vertex_text_models:
+ litellm.vertex_text_models.append(key)
+ elif value.get("litellm_provider") == "vertex_ai-code-text-models":
+ if key not in litellm.vertex_code_text_models:
+ litellm.vertex_code_text_models.append(key)
+ elif value.get("litellm_provider") == "vertex_ai-chat-models":
+ if key not in litellm.vertex_chat_models:
+ litellm.vertex_chat_models.append(key)
+ elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
+ if key not in litellm.vertex_code_chat_models:
+ litellm.vertex_code_chat_models.append(key)
+ elif value.get("litellm_provider") == "ai21":
+ if key not in litellm.ai21_models:
+ litellm.ai21_models.append(key)
+ elif value.get("litellm_provider") == "nlp_cloud":
+ if key not in litellm.nlp_cloud_models:
+ litellm.nlp_cloud_models.append(key)
+ elif value.get("litellm_provider") == "aleph_alpha":
+ if key not in litellm.aleph_alpha_models:
+ litellm.aleph_alpha_models.append(key)
+ elif value.get("litellm_provider") == "bedrock":
+ if key not in litellm.bedrock_models:
+ litellm.bedrock_models.append(key)
+ return model_cost
+
+
+def _should_drop_param(k, additional_drop_params) -> bool:
+ if (
+ additional_drop_params is not None
+ and isinstance(additional_drop_params, list)
+ and k in additional_drop_params
+ ):
+ return True # allow user to drop specific params for a model - e.g. vllm - logit bias
+
+ return False
+
+
+def _get_non_default_params(
+ passed_params: dict, default_params: dict, additional_drop_params: Optional[bool]
+) -> dict:
+ non_default_params = {}
+ for k, v in passed_params.items():
+ if (
+ k in default_params
+ and v != default_params[k]
+ and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
+ is False
+ ):
+ non_default_params[k] = v
+
+ return non_default_params
+
+
+def get_optional_params_transcription(
+ model: str,
+ language: Optional[str] = None,
+ prompt: Optional[str] = None,
+ response_format: Optional[str] = None,
+ temperature: Optional[int] = None,
+ timestamp_granularities: Optional[List[Literal["word", "segment"]]] = None,
+ custom_llm_provider: Optional[str] = None,
+ drop_params: Optional[bool] = None,
+ **kwargs,
+):
+ # retrieve all parameters passed to the function
+ passed_params = locals()
+ custom_llm_provider = passed_params.pop("custom_llm_provider")
+ drop_params = passed_params.pop("drop_params")
+ special_params = passed_params.pop("kwargs")
+ for k, v in special_params.items():
+ passed_params[k] = v
+
+ default_params = {
+ "language": None,
+ "prompt": None,
+ "response_format": None,
+ "temperature": None, # openai defaults this to 0
+ }
+
+ non_default_params = {
+ k: v
+ for k, v in passed_params.items()
+ if (k in default_params and v != default_params[k])
+ }
+ optional_params = {}
+
+ ## raise exception if non-default value passed for non-openai/azure embedding calls
+ def _check_valid_arg(supported_params):
+ if len(non_default_params.keys()) > 0:
+ keys = list(non_default_params.keys())
+ for k in keys:
+ if (
+ drop_params is True or litellm.drop_params is True
+ ) and k not in supported_params: # drop the unsupported non-default values
+ non_default_params.pop(k, None)
+ elif k not in supported_params:
+ raise UnsupportedParamsError(
+ status_code=500,
+ message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
+ )
+ return non_default_params
+
+ provider_config: Optional[BaseAudioTranscriptionConfig] = None
+ if custom_llm_provider is not None:
+ provider_config = ProviderConfigManager.get_provider_audio_transcription_config(
+ model=model,
+ provider=LlmProviders(custom_llm_provider),
+ )
+
+ if custom_llm_provider == "openai" or custom_llm_provider == "azure":
+ optional_params = non_default_params
+ elif custom_llm_provider == "groq":
+ supported_params = litellm.GroqSTTConfig().get_supported_openai_params_stt()
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.GroqSTTConfig().map_openai_params_stt(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=drop_params if drop_params is not None else False,
+ )
+ elif provider_config is not None: # handles fireworks ai, and any future providers
+ supported_params = provider_config.get_supported_openai_params(model=model)
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = provider_config.map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=drop_params if drop_params is not None else False,
+ )
+ for k in passed_params.keys(): # pass additional kwargs without modification
+ if k not in default_params.keys():
+ optional_params[k] = passed_params[k]
+ return optional_params
+
+
+def get_optional_params_image_gen(
+ model: Optional[str] = None,
+ n: Optional[int] = None,
+ quality: Optional[str] = None,
+ response_format: Optional[str] = None,
+ size: Optional[str] = None,
+ style: Optional[str] = None,
+ user: Optional[str] = None,
+ custom_llm_provider: Optional[str] = None,
+ additional_drop_params: Optional[bool] = None,
+ **kwargs,
+):
+ # retrieve all parameters passed to the function
+ passed_params = locals()
+ model = passed_params.pop("model", None)
+ custom_llm_provider = passed_params.pop("custom_llm_provider")
+ additional_drop_params = passed_params.pop("additional_drop_params", None)
+ special_params = passed_params.pop("kwargs")
+ for k, v in special_params.items():
+ if k.startswith("aws_") and (
+ custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
+ ): # allow dynamically setting boto3 init logic
+ continue
+ elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
+ continue
+ elif (
+ k.startswith("vertex_")
+ and custom_llm_provider != "vertex_ai"
+ and custom_llm_provider != "vertex_ai_beta"
+ ): # allow dynamically setting vertex ai init logic
+ continue
+ passed_params[k] = v
+
+ default_params = {
+ "n": None,
+ "quality": None,
+ "response_format": None,
+ "size": None,
+ "style": None,
+ "user": None,
+ }
+
+ non_default_params = _get_non_default_params(
+ passed_params=passed_params,
+ default_params=default_params,
+ additional_drop_params=additional_drop_params,
+ )
+ optional_params = {}
+
+ ## raise exception if non-default value passed for non-openai/azure embedding calls
+ def _check_valid_arg(supported_params):
+ if len(non_default_params.keys()) > 0:
+ keys = list(non_default_params.keys())
+ for k in keys:
+ if (
+ litellm.drop_params is True and k not in supported_params
+ ): # drop the unsupported non-default values
+ non_default_params.pop(k, None)
+ elif k not in supported_params:
+ raise UnsupportedParamsError(
+ status_code=500,
+ message=f"Setting `{k}` is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
+ )
+ return non_default_params
+
+ if (
+ custom_llm_provider == "openai"
+ or custom_llm_provider == "azure"
+ or custom_llm_provider in litellm.openai_compatible_providers
+ ):
+ optional_params = non_default_params
+ elif custom_llm_provider == "bedrock":
+ # use stability3 config class if model is a stability3 model
+ config_class = (
+ litellm.AmazonStability3Config
+ if litellm.AmazonStability3Config._is_stability_3_model(model=model)
+ else (
+ litellm.AmazonNovaCanvasConfig
+ if litellm.AmazonNovaCanvasConfig._is_nova_model(model=model)
+ else litellm.AmazonStabilityConfig
+ )
+ )
+ supported_params = config_class.get_supported_openai_params(model=model)
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = config_class.map_openai_params(
+ non_default_params=non_default_params, optional_params={}
+ )
+ elif custom_llm_provider == "vertex_ai":
+ supported_params = ["n"]
+ """
+ All params here: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
+ """
+ _check_valid_arg(supported_params=supported_params)
+ if n is not None:
+ optional_params["sampleCount"] = int(n)
+
+ for k in passed_params.keys():
+ if k not in default_params.keys():
+ optional_params[k] = passed_params[k]
+ return optional_params
+
+
+def get_optional_params_embeddings( # noqa: PLR0915
+ # 2 optional params
+ model: str,
+ user: Optional[str] = None,
+ encoding_format: Optional[str] = None,
+ dimensions: Optional[int] = None,
+ custom_llm_provider="",
+ drop_params: Optional[bool] = None,
+ additional_drop_params: Optional[bool] = None,
+ **kwargs,
+):
+ # retrieve all parameters passed to the function
+ passed_params = locals()
+ custom_llm_provider = passed_params.pop("custom_llm_provider", None)
+ special_params = passed_params.pop("kwargs")
+ for k, v in special_params.items():
+ passed_params[k] = v
+
+ drop_params = passed_params.pop("drop_params", None)
+ additional_drop_params = passed_params.pop("additional_drop_params", None)
+
+ default_params = {"user": None, "encoding_format": None, "dimensions": None}
+
+ def _check_valid_arg(supported_params: Optional[list]):
+ if supported_params is None:
+ return
+ unsupported_params = {}
+ for k in non_default_params.keys():
+ if k not in supported_params:
+ unsupported_params[k] = non_default_params[k]
+ if unsupported_params:
+ if litellm.drop_params is True or (
+ drop_params is not None and drop_params is True
+ ):
+ pass
+ else:
+ raise UnsupportedParamsError(
+ status_code=500,
+ message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
+ )
+
+ non_default_params = _get_non_default_params(
+ passed_params=passed_params,
+ default_params=default_params,
+ additional_drop_params=additional_drop_params,
+ )
+ ## raise exception if non-default value passed for non-openai/azure embedding calls
+ if custom_llm_provider == "openai":
+ # 'dimensions` is only supported in `text-embedding-3` and later models
+
+ if (
+ model is not None
+ and "text-embedding-3" not in model
+ and "dimensions" in non_default_params.keys()
+ ):
+ raise UnsupportedParamsError(
+ status_code=500,
+ message="Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
+ )
+ elif custom_llm_provider == "triton":
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.TritonEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params={},
+ model=model,
+ drop_params=drop_params if drop_params is not None else False,
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "databricks":
+ supported_params = get_supported_openai_params(
+ model=model or "",
+ custom_llm_provider="databricks",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.DatabricksEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params, optional_params={}
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "nvidia_nim":
+ supported_params = get_supported_openai_params(
+ model=model or "",
+ custom_llm_provider="nvidia_nim",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.nvidiaNimEmbeddingConfig.map_openai_params(
+ non_default_params=non_default_params, optional_params={}, kwargs=kwargs
+ )
+ return optional_params
+ elif custom_llm_provider == "vertex_ai":
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider="vertex_ai",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ (
+ optional_params,
+ kwargs,
+ ) = litellm.VertexAITextEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params, optional_params={}, kwargs=kwargs
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "lm_studio":
+ supported_params = (
+ litellm.LmStudioEmbeddingConfig().get_supported_openai_params()
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.LmStudioEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params, optional_params={}
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "bedrock":
+ # if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
+ if "amazon.titan-embed-text-v1" in model:
+ object: Any = litellm.AmazonTitanG1Config()
+ elif "amazon.titan-embed-image-v1" in model:
+ object = litellm.AmazonTitanMultimodalEmbeddingG1Config()
+ elif "amazon.titan-embed-text-v2:0" in model:
+ object = litellm.AmazonTitanV2Config()
+ elif "cohere.embed-multilingual-v3" in model:
+ object = litellm.BedrockCohereEmbeddingConfig()
+ else: # unmapped model
+ supported_params = []
+ _check_valid_arg(supported_params=supported_params)
+ final_params = {**kwargs}
+ return final_params
+
+ supported_params = object.get_supported_openai_params()
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = object.map_openai_params(
+ non_default_params=non_default_params, optional_params={}
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "mistral":
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider="mistral",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.MistralEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params, optional_params={}
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "jina_ai":
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider="jina_ai",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.JinaAIEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params, optional_params={}
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "voyage":
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider="voyage",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.VoyageEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params={},
+ model=model,
+ drop_params=drop_params if drop_params is not None else False,
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+ elif custom_llm_provider == "fireworks_ai":
+ supported_params = get_supported_openai_params(
+ model=model,
+ custom_llm_provider="fireworks_ai",
+ request_type="embeddings",
+ )
+ _check_valid_arg(supported_params=supported_params)
+ optional_params = litellm.FireworksAIEmbeddingConfig().map_openai_params(
+ non_default_params=non_default_params, optional_params={}, model=model
+ )
+ final_params = {**optional_params, **kwargs}
+ return final_params
+
+ elif (
+ custom_llm_provider != "openai"
+ and custom_llm_provider != "azure"
+ and custom_llm_provider not in litellm.openai_compatible_providers
+ ):
+ if len(non_default_params.keys()) > 0:
+ if (
+ litellm.drop_params is True or drop_params is True
+ ): # drop the unsupported non-default values
+ keys = list(non_default_params.keys())
+ for k in keys:
+ non_default_params.pop(k, None)
+ else:
+ raise UnsupportedParamsError(
+ status_code=500,
+ message=f"Setting {non_default_params} is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
+ )
+ final_params = {**non_default_params, **kwargs}
+ return final_params
+
+
+def _remove_additional_properties(schema):
+ """
+ clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
+
+ Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
+ """
+ if isinstance(schema, dict):
+ # Remove the 'additionalProperties' key if it exists and is set to False
+ if "additionalProperties" in schema and schema["additionalProperties"] is False:
+ del schema["additionalProperties"]
+
+ # Recursively process all dictionary values
+ for key, value in schema.items():
+ _remove_additional_properties(value)
+
+ elif isinstance(schema, list):
+ # Recursively process all items in the list
+ for item in schema:
+ _remove_additional_properties(item)
+
+ return schema
+
+
+def _remove_strict_from_schema(schema):
+ """
+ Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
+ """
+ if isinstance(schema, dict):
+ # Remove the 'additionalProperties' key if it exists and is set to False
+ if "strict" in schema:
+ del schema["strict"]
+
+ # Recursively process all dictionary values
+ for key, value in schema.items():
+ _remove_strict_from_schema(value)
+
+ elif isinstance(schema, list):
+ # Recursively process all items in the list
+ for item in schema:
+ _remove_strict_from_schema(item)
+
+ return schema
+
+
+def _remove_unsupported_params(
+ non_default_params: dict, supported_openai_params: Optional[List[str]]
+) -> dict:
+ """
+ Remove unsupported params from non_default_params
+ """
+ remove_keys = []
+ if supported_openai_params is None:
+ return {} # no supported params, so no optional openai params to send
+ for param in non_default_params.keys():
+ if param not in supported_openai_params:
+ remove_keys.append(param)
+ for key in remove_keys:
+ non_default_params.pop(key, None)
+ return non_default_params
+
+
+def get_optional_params( # noqa: PLR0915
+ # use the openai defaults
+ # https://platform.openai.com/docs/api-reference/chat/create
+ model: str,
+ functions=None,
+ function_call=None,
+ temperature=None,
+ top_p=None,
+ n=None,
+ stream=False,
+ stream_options=None,
+ stop=None,
+ max_tokens=None,
+ max_completion_tokens=None,
+ modalities=None,
+ prediction=None,
+ audio=None,
+ presence_penalty=None,
+ frequency_penalty=None,
+ logit_bias=None,
+ user=None,
+ custom_llm_provider="",
+ response_format=None,
+ seed=None,
+ tools=None,
+ tool_choice=None,
+ max_retries=None,
+ logprobs=None,
+ top_logprobs=None,
+ extra_headers=None,
+ api_version=None,
+ parallel_tool_calls=None,
+ drop_params=None,
+ reasoning_effort=None,
+ additional_drop_params=None,
+ messages: Optional[List[AllMessageValues]] = None,
+ thinking: Optional[AnthropicThinkingParam] = None,
+ **kwargs,
+):
+ # retrieve all parameters passed to the function
+ passed_params = locals().copy()
+ special_params = passed_params.pop("kwargs")
+ for k, v in special_params.items():
+ if k.startswith("aws_") and (
+ custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
+ ): # allow dynamically setting boto3 init logic
+ continue
+ elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
+ continue
+ elif (
+ k.startswith("vertex_")
+ and custom_llm_provider != "vertex_ai"
+ and custom_llm_provider != "vertex_ai_beta"
+ ): # allow dynamically setting vertex ai init logic
+ continue
+ passed_params[k] = v
+
+ optional_params: Dict = {}
+
+ common_auth_dict = litellm.common_cloud_provider_auth_params
+ if custom_llm_provider in common_auth_dict["providers"]:
+ """
+ Check if params = ["project", "region_name", "token"]
+ and correctly translate for = ["azure", "vertex_ai", "watsonx", "aws"]
+ """
+ if custom_llm_provider == "azure":
+ optional_params = litellm.AzureOpenAIConfig().map_special_auth_params(
+ non_default_params=passed_params, optional_params=optional_params
+ )
+ elif custom_llm_provider == "bedrock":
+ optional_params = (
+ litellm.AmazonBedrockGlobalConfig().map_special_auth_params(
+ non_default_params=passed_params, optional_params=optional_params
+ )
+ )
+ elif (
+ custom_llm_provider == "vertex_ai"
+ or custom_llm_provider == "vertex_ai_beta"
+ ):
+ optional_params = litellm.VertexAIConfig().map_special_auth_params(
+ non_default_params=passed_params, optional_params=optional_params
+ )
+ elif custom_llm_provider == "watsonx":
+ optional_params = litellm.IBMWatsonXAIConfig().map_special_auth_params(
+ non_default_params=passed_params, optional_params=optional_params
+ )
+
+ default_params = {
+ "functions": None,
+ "function_call": None,
+ "temperature": None,
+ "top_p": None,
+ "n": None,
+ "stream": None,
+ "stream_options": None,
+ "stop": None,
+ "max_tokens": None,
+ "max_completion_tokens": None,
+ "modalities": None,
+ "prediction": None,
+ "audio": None,
+ "presence_penalty": None,
+ "frequency_penalty": None,
+ "logit_bias": None,
+ "user": None,
+ "model": None,
+ "custom_llm_provider": "",
+ "response_format": None,
+ "seed": None,
+ "tools": None,
+ "tool_choice": None,
+ "max_retries": None,
+ "logprobs": None,
+ "top_logprobs": None,
+ "extra_headers": None,
+ "api_version": None,
+ "parallel_tool_calls": None,
+ "drop_params": None,
+ "additional_drop_params": None,
+ "messages": None,
+ "reasoning_effort": None,
+ "thinking": None,
+ }
+
+ # filter out those parameters that were passed with non-default values
+
+ non_default_params = {
+ k: v
+ for k, v in passed_params.items()
+ if (
+ k != "model"
+ and k != "custom_llm_provider"
+ and k != "api_version"
+ and k != "drop_params"
+ and k != "additional_drop_params"
+ and k != "messages"
+ and k in default_params
+ and v != default_params[k]
+ and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
+ is False
+ )
+ }
+
+ ## raise exception if function calling passed in for a provider that doesn't support it
+ if (
+ "functions" in non_default_params
+ or "function_call" in non_default_params
+ or "tools" in non_default_params
+ ):
+ if (
+ custom_llm_provider == "ollama"
+ and custom_llm_provider != "text-completion-openai"
+ and custom_llm_provider != "azure"
+ and custom_llm_provider != "vertex_ai"
+ and custom_llm_provider != "anyscale"
+ and custom_llm_provider != "together_ai"
+ and custom_llm_provider != "groq"
+ and custom_llm_provider != "nvidia_nim"
+ and custom_llm_provider != "cerebras"
+ and custom_llm_provider != "xai"
+ and custom_llm_provider != "ai21_chat"
+ and custom_llm_provider != "volcengine"
+ and custom_llm_provider != "deepseek"
+ and custom_llm_provider != "codestral"
+ and custom_llm_provider != "mistral"
+ and custom_llm_provider != "anthropic"
+ and custom_llm_provider != "cohere_chat"
+ and custom_llm_provider != "cohere"
+ and custom_llm_provider != "bedrock"
+ and custom_llm_provider != "ollama_chat"
+ and custom_llm_provider != "openrouter"
+ and custom_llm_provider not in litellm.openai_compatible_providers
+ ):
+ if custom_llm_provider == "ollama":
+ # ollama actually supports json output
+ optional_params["format"] = "json"
+ litellm.add_function_to_prompt = (
+ True # so that main.py adds the function call to the prompt
+ )
+ if "tools" in non_default_params:
+ optional_params["functions_unsupported_model"] = (
+ non_default_params.pop("tools")
+ )
+ non_default_params.pop(
+ "tool_choice", None
+ ) # causes ollama requests to hang
+ elif "functions" in non_default_params:
+ optional_params["functions_unsupported_model"] = (
+ non_default_params.pop("functions")
+ )
+ elif (
+ litellm.add_function_to_prompt
+ ): # if user opts to add it to prompt instead
+ optional_params["functions_unsupported_model"] = non_default_params.pop(
+ "tools", non_default_params.pop("functions", None)
+ )
+ else:
+ raise UnsupportedParamsError(
+ status_code=500,
+ message=f"Function calling is not supported by {custom_llm_provider}.",
+ )
+
+ provider_config: Optional[BaseConfig] = None
+ if custom_llm_provider is not None and custom_llm_provider in [
+ provider.value for provider in LlmProviders
+ ]:
+ provider_config = ProviderConfigManager.get_provider_chat_config(
+ model=model, provider=LlmProviders(custom_llm_provider)
+ )
+
+ if "response_format" in non_default_params:
+ if provider_config is not None:
+ non_default_params["response_format"] = (
+ provider_config.get_json_schema_from_pydantic_object(
+ response_format=non_default_params["response_format"]
+ )
+ )
+ else:
+ non_default_params["response_format"] = type_to_response_format_param(
+ response_format=non_default_params["response_format"]
+ )
+
+ if "tools" in non_default_params and isinstance(
+ non_default_params, list
+ ): # fixes https://github.com/BerriAI/litellm/issues/4933
+ tools = non_default_params["tools"]
+ for (
+ tool
+ ) in (
+ tools
+ ): # clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
+ tool_function = tool.get("function", {})
+ parameters = tool_function.get("parameters", None)
+ if parameters is not None:
+ new_parameters = copy.deepcopy(parameters)
+ if (
+ "additionalProperties" in new_parameters
+ and new_parameters["additionalProperties"] is False
+ ):
+ new_parameters.pop("additionalProperties", None)
+ tool_function["parameters"] = new_parameters
+
+ def _check_valid_arg(supported_params: List[str]):
+ verbose_logger.info(
+ f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
+ )
+ verbose_logger.debug(
+ f"\nLiteLLM: Params passed to completion() {passed_params}"
+ )
+ verbose_logger.debug(
+ f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
+ )
+ unsupported_params = {}
+ for k in non_default_params.keys():
+ if k not in supported_params:
+ if k == "user" or k == "stream_options" or k == "stream":
+ continue
+ if k == "n" and n == 1: # langchain sends n=1 as a default value
+ continue # skip this param
+ if (
+ k == "max_retries"
+ ): # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
+ continue # skip this param
+ # Always keeps this in elif code blocks
+ else:
+ unsupported_params[k] = non_default_params[k]
+
+ if unsupported_params:
+ if litellm.drop_params is True or (
+ drop_params is not None and drop_params is True
+ ):
+ for k in unsupported_params.keys():
+ non_default_params.pop(k, None)
+ else:
+ raise UnsupportedParamsError(
+ status_code=500,
+ message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
+ )
+
+ supported_params = get_supported_openai_params(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ if supported_params is None:
+ supported_params = get_supported_openai_params(
+ model=model, custom_llm_provider="openai"
+ )
+ _check_valid_arg(supported_params=supported_params or [])
+ ## raise exception if provider doesn't support passed in param
+ if custom_llm_provider == "anthropic":
+ ## check if unsupported param passed in
+ optional_params = litellm.AnthropicConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "anthropic_text":
+ optional_params = litellm.AnthropicTextConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ optional_params = litellm.AnthropicTextConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+
+ elif custom_llm_provider == "cohere":
+ ## check if unsupported param passed in
+ # handle cohere params
+ optional_params = litellm.CohereConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "cohere_chat":
+ # handle cohere params
+ optional_params = litellm.CohereChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "triton":
+ optional_params = litellm.TritonConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=drop_params if drop_params is not None else False,
+ )
+
+ elif custom_llm_provider == "maritalk":
+ optional_params = litellm.MaritalkConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "replicate":
+
+ optional_params = litellm.ReplicateConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "predibase":
+ optional_params = litellm.PredibaseConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "huggingface":
+ optional_params = litellm.HuggingfaceConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "together_ai":
+
+ optional_params = litellm.TogetherAIConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "vertex_ai" and (
+ model in litellm.vertex_chat_models
+ or model in litellm.vertex_code_chat_models
+ or model in litellm.vertex_text_models
+ or model in litellm.vertex_code_text_models
+ or model in litellm.vertex_language_models
+ or model in litellm.vertex_vision_models
+ ):
+ optional_params = litellm.VertexGeminiConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+
+ elif custom_llm_provider == "gemini":
+ optional_params = litellm.GoogleAIStudioGeminiConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "vertex_ai_beta" or (
+ custom_llm_provider == "vertex_ai" and "gemini" in model
+ ):
+ optional_params = litellm.VertexGeminiConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif litellm.VertexAIAnthropicConfig.is_supported_model(
+ model=model, custom_llm_provider=custom_llm_provider
+ ):
+ optional_params = litellm.VertexAIAnthropicConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "vertex_ai":
+
+ if model in litellm.vertex_mistral_models:
+ if "codestral" in model:
+ optional_params = (
+ litellm.CodestralTextCompletionConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ )
+ else:
+ optional_params = litellm.MistralConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif model in litellm.vertex_ai_ai21_models:
+ optional_params = litellm.VertexAIAi21Config().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ else: # use generic openai-like param mapping
+ optional_params = litellm.VertexAILlama3Config().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+
+ elif custom_llm_provider == "sagemaker":
+ # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
+ optional_params = litellm.SagemakerConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "bedrock":
+ bedrock_route = BedrockModelInfo.get_bedrock_route(model)
+ bedrock_base_model = BedrockModelInfo.get_base_model(model)
+ if bedrock_route == "converse" or bedrock_route == "converse_like":
+ optional_params = litellm.AmazonConverseConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ messages=messages,
+ )
+
+ elif "anthropic" in bedrock_base_model and bedrock_route == "invoke":
+ if bedrock_base_model.startswith("anthropic.claude-3"):
+
+ optional_params = (
+ litellm.AmazonAnthropicClaude3Config().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ )
+
+ else:
+ optional_params = litellm.AmazonAnthropicConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif provider_config is not None:
+ optional_params = provider_config.map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "cloudflare":
+
+ optional_params = litellm.CloudflareChatConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "ollama":
+
+ optional_params = litellm.OllamaConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "ollama_chat":
+
+ optional_params = litellm.OllamaChatConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "nlp_cloud":
+ optional_params = litellm.NLPCloudConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+
+ elif custom_llm_provider == "petals":
+ optional_params = litellm.PetalsConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "deepinfra":
+ optional_params = litellm.DeepInfraConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "perplexity" and provider_config is not None:
+ optional_params = provider_config.map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "mistral" or custom_llm_provider == "codestral":
+ optional_params = litellm.MistralConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "text-completion-codestral":
+ optional_params = litellm.CodestralTextCompletionConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+
+ elif custom_llm_provider == "databricks":
+ optional_params = litellm.DatabricksConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "nvidia_nim":
+ optional_params = litellm.NvidiaNimConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "cerebras":
+ optional_params = litellm.CerebrasConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "xai":
+ optional_params = litellm.XAIChatConfig().map_openai_params(
+ model=model,
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ )
+ elif custom_llm_provider == "ai21_chat" or custom_llm_provider == "ai21":
+ optional_params = litellm.AI21ChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "fireworks_ai":
+ optional_params = litellm.FireworksAIConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "volcengine":
+ optional_params = litellm.VolcEngineConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "hosted_vllm":
+ optional_params = litellm.HostedVLLMChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "vllm":
+ optional_params = litellm.VLLMConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "groq":
+ optional_params = litellm.GroqChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "deepseek":
+ optional_params = litellm.OpenAIConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "openrouter":
+ optional_params = litellm.OpenrouterConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+
+ elif custom_llm_provider == "watsonx":
+ optional_params = litellm.IBMWatsonXChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ # WatsonX-text param check
+ for param in passed_params.keys():
+ if litellm.IBMWatsonXAIConfig().is_watsonx_text_param(param):
+ raise ValueError(
+ f"LiteLLM now defaults to Watsonx's `/text/chat` endpoint. Please use the `watsonx_text` provider instead, to call the `/text/generation` endpoint. Param: {param}"
+ )
+ elif custom_llm_provider == "watsonx_text":
+ optional_params = litellm.IBMWatsonXAIConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "openai":
+ optional_params = litellm.OpenAIConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ elif custom_llm_provider == "azure":
+ if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
+ optional_params = litellm.AzureOpenAIO1Config().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ else:
+ verbose_logger.debug(
+ "Azure optional params - api_version: api_version={}, litellm.api_version={}, os.environ['AZURE_API_VERSION']={}".format(
+ api_version, litellm.api_version, get_secret("AZURE_API_VERSION")
+ )
+ )
+ api_version = (
+ api_version
+ or litellm.api_version
+ or get_secret("AZURE_API_VERSION")
+ or litellm.AZURE_DEFAULT_API_VERSION
+ )
+ optional_params = litellm.AzureOpenAIConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ api_version=api_version, # type: ignore
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ else: # assume passing in params for openai-like api
+ optional_params = litellm.OpenAILikeChatConfig().map_openai_params(
+ non_default_params=non_default_params,
+ optional_params=optional_params,
+ model=model,
+ drop_params=(
+ drop_params
+ if drop_params is not None and isinstance(drop_params, bool)
+ else False
+ ),
+ )
+ if (
+ custom_llm_provider
+ in ["openai", "azure", "text-completion-openai"]
+ + litellm.openai_compatible_providers
+ ):
+ # for openai, azure we should pass the extra/passed params within `extra_body` https://github.com/openai/openai-python/blob/ac33853ba10d13ac149b1fa3ca6dba7d613065c9/src/openai/resources/models.py#L46
+ if (
+ _should_drop_param(
+ k="extra_body", additional_drop_params=additional_drop_params
+ )
+ is False
+ ):
+ extra_body = passed_params.pop("extra_body", {})
+ for k in passed_params.keys():
+ if k not in default_params.keys():
+ extra_body[k] = passed_params[k]
+ optional_params.setdefault("extra_body", {})
+ optional_params["extra_body"] = {
+ **optional_params["extra_body"],
+ **extra_body,
+ }
+
+ optional_params["extra_body"] = _ensure_extra_body_is_safe(
+ extra_body=optional_params["extra_body"]
+ )
+ else:
+ # if user passed in non-default kwargs for specific providers/models, pass them along
+ for k in passed_params.keys():
+ if k not in default_params.keys():
+ optional_params[k] = passed_params[k]
+ print_verbose(f"Final returned optional params: {optional_params}")
+ return optional_params
+
+
+def get_non_default_params(passed_params: dict) -> dict:
+ default_params = {
+ "functions": None,
+ "function_call": None,
+ "temperature": None,
+ "top_p": None,
+ "n": None,
+ "stream": None,
+ "stream_options": None,
+ "stop": None,
+ "max_tokens": None,
+ "presence_penalty": None,
+ "frequency_penalty": None,
+ "logit_bias": None,
+ "user": None,
+ "model": None,
+ "custom_llm_provider": "",
+ "response_format": None,
+ "seed": None,
+ "tools": None,
+ "tool_choice": None,
+ "max_retries": None,
+ "logprobs": None,
+ "top_logprobs": None,
+ "extra_headers": None,
+ }
+ # filter out those parameters that were passed with non-default values
+ non_default_params = {
+ k: v
+ for k, v in passed_params.items()
+ if (
+ k != "model"
+ and k != "custom_llm_provider"
+ and k in default_params
+ and v != default_params[k]
+ )
+ }
+
+ return non_default_params
+
+
+def calculate_max_parallel_requests(
+ max_parallel_requests: Optional[int],
+ rpm: Optional[int],
+ tpm: Optional[int],
+ default_max_parallel_requests: Optional[int],
+) -> Optional[int]:
+ """
+ Returns the max parallel requests to send to a deployment.
+
+ Used in semaphore for async requests on router.
+
+ Parameters:
+ - max_parallel_requests - Optional[int] - max_parallel_requests allowed for that deployment
+ - rpm - Optional[int] - requests per minute allowed for that deployment
+ - tpm - Optional[int] - tokens per minute allowed for that deployment
+ - default_max_parallel_requests - Optional[int] - default_max_parallel_requests allowed for any deployment
+
+ Returns:
+ - int or None (if all params are None)
+
+ Order:
+ max_parallel_requests > rpm > tpm / 6 (azure formula) > default max_parallel_requests
+
+ Azure RPM formula:
+ 6 rpm per 1000 TPM
+ https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits
+
+
+ """
+ if max_parallel_requests is not None:
+ return max_parallel_requests
+ elif rpm is not None:
+ return rpm
+ elif tpm is not None:
+ calculated_rpm = int(tpm / 1000 / 6)
+ if calculated_rpm == 0:
+ calculated_rpm = 1
+ return calculated_rpm
+ elif default_max_parallel_requests is not None:
+ return default_max_parallel_requests
+ return None
+
+
+def _get_order_filtered_deployments(healthy_deployments: List[Dict]) -> List:
+ min_order = min(
+ (
+ deployment["litellm_params"]["order"]
+ for deployment in healthy_deployments
+ if "order" in deployment["litellm_params"]
+ ),
+ default=None,
+ )
+
+ if min_order is not None:
+ filtered_deployments = [
+ deployment
+ for deployment in healthy_deployments
+ if deployment["litellm_params"].get("order") == min_order
+ ]
+
+ return filtered_deployments
+ return healthy_deployments
+
+
+def _get_model_region(
+ custom_llm_provider: str, litellm_params: LiteLLM_Params
+) -> Optional[str]:
+ """
+ Return the region for a model, for a given provider
+ """
+ if custom_llm_provider == "vertex_ai":
+ # check 'vertex_location'
+ vertex_ai_location = (
+ litellm_params.vertex_location
+ or litellm.vertex_location
+ or get_secret("VERTEXAI_LOCATION")
+ or get_secret("VERTEX_LOCATION")
+ )
+ if vertex_ai_location is not None and isinstance(vertex_ai_location, str):
+ return vertex_ai_location
+ elif custom_llm_provider == "bedrock":
+ aws_region_name = litellm_params.aws_region_name
+ if aws_region_name is not None:
+ return aws_region_name
+ elif custom_llm_provider == "watsonx":
+ watsonx_region_name = litellm_params.watsonx_region_name
+ if watsonx_region_name is not None:
+ return watsonx_region_name
+ return litellm_params.region_name
+
+
+def _infer_model_region(litellm_params: LiteLLM_Params) -> Optional[AllowedModelRegion]:
+ """
+ Infer if a model is in the EU or US region
+
+ Returns:
+ - str (region) - "eu" or "us"
+ - None (if region not found)
+ """
+ model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+ model=litellm_params.model, litellm_params=litellm_params
+ )
+
+ model_region = _get_model_region(
+ custom_llm_provider=custom_llm_provider, litellm_params=litellm_params
+ )
+
+ if model_region is None:
+ verbose_logger.debug(
+ "Cannot infer model region for model: {}".format(litellm_params.model)
+ )
+ return None
+
+ if custom_llm_provider == "azure":
+ eu_regions = litellm.AzureOpenAIConfig().get_eu_regions()
+ us_regions = litellm.AzureOpenAIConfig().get_us_regions()
+ elif custom_llm_provider == "vertex_ai":
+ eu_regions = litellm.VertexAIConfig().get_eu_regions()
+ us_regions = litellm.VertexAIConfig().get_us_regions()
+ elif custom_llm_provider == "bedrock":
+ eu_regions = litellm.AmazonBedrockGlobalConfig().get_eu_regions()
+ us_regions = litellm.AmazonBedrockGlobalConfig().get_us_regions()
+ elif custom_llm_provider == "watsonx":
+ eu_regions = litellm.IBMWatsonXAIConfig().get_eu_regions()
+ us_regions = litellm.IBMWatsonXAIConfig().get_us_regions()
+ else:
+ eu_regions = []
+ us_regions = []
+
+ for region in eu_regions:
+ if region in model_region.lower():
+ return "eu"
+ for region in us_regions:
+ if region in model_region.lower():
+ return "us"
+ return None
+
+
+def _is_region_eu(litellm_params: LiteLLM_Params) -> bool:
+ """
+ Return true/false if a deployment is in the EU
+ """
+ if litellm_params.region_name == "eu":
+ return True
+
+ ## Else - try and infer from model region
+ model_region = _infer_model_region(litellm_params=litellm_params)
+ if model_region is not None and model_region == "eu":
+ return True
+ return False
+
+
+def _is_region_us(litellm_params: LiteLLM_Params) -> bool:
+ """
+ Return true/false if a deployment is in the US
+ """
+ if litellm_params.region_name == "us":
+ return True
+
+ ## Else - try and infer from model region
+ model_region = _infer_model_region(litellm_params=litellm_params)
+ if model_region is not None and model_region == "us":
+ return True
+ return False
+
+
+def is_region_allowed(
+ litellm_params: LiteLLM_Params, allowed_model_region: str
+) -> bool:
+ """
+ Return true/false if a deployment is in the EU
+ """
+ if litellm_params.region_name == allowed_model_region:
+ return True
+ return False
+
+
+def get_model_region(
+ litellm_params: LiteLLM_Params, mode: Optional[str]
+) -> Optional[str]:
+ """
+ Pass the litellm params for an azure model, and get back the region
+ """
+ if (
+ "azure" in litellm_params.model
+ and isinstance(litellm_params.api_key, str)
+ and isinstance(litellm_params.api_base, str)
+ ):
+ _model = litellm_params.model.replace("azure/", "")
+ response: dict = litellm.AzureChatCompletion().get_headers(
+ model=_model,
+ api_key=litellm_params.api_key,
+ api_base=litellm_params.api_base,
+ api_version=litellm_params.api_version or litellm.AZURE_DEFAULT_API_VERSION,
+ timeout=10,
+ mode=mode or "chat",
+ )
+
+ region: Optional[str] = response.get("x-ms-region", None)
+ return region
+ return None
+
+
+def get_first_chars_messages(kwargs: dict) -> str:
+ try:
+ _messages = kwargs.get("messages")
+ _messages = str(_messages)[:100]
+ return _messages
+ except Exception:
+ return ""
+
+
+def _count_characters(text: str) -> int:
+ # Remove white spaces and count characters
+ filtered_text = "".join(char for char in text if not char.isspace())
+ return len(filtered_text)
+
+
+def get_response_string(response_obj: Union[ModelResponse, ModelResponseStream]) -> str:
+ _choices: Union[List[Union[Choices, StreamingChoices]], List[StreamingChoices]] = (
+ response_obj.choices
+ )
+
+ response_str = ""
+ for choice in _choices:
+ if isinstance(choice, Choices):
+ if choice.message.content is not None:
+ response_str += choice.message.content
+ elif isinstance(choice, StreamingChoices):
+ if choice.delta.content is not None:
+ response_str += choice.delta.content
+
+ return response_str
+
+
+def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
+ api_key = dynamic_api_key or litellm.api_key
+ # openai
+ if llm_provider == "openai" or llm_provider == "text-completion-openai":
+ api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
+ # anthropic
+ elif llm_provider == "anthropic" or llm_provider == "anthropic_text":
+ api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY")
+ # ai21
+ elif llm_provider == "ai21":
+ api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY")
+ # aleph_alpha
+ elif llm_provider == "aleph_alpha":
+ api_key = (
+ api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY")
+ )
+ # baseten
+ elif llm_provider == "baseten":
+ api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY")
+ # cohere
+ elif llm_provider == "cohere" or llm_provider == "cohere_chat":
+ api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY")
+ # huggingface
+ elif llm_provider == "huggingface":
+ api_key = (
+ api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY")
+ )
+ # nlp_cloud
+ elif llm_provider == "nlp_cloud":
+ api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY")
+ # replicate
+ elif llm_provider == "replicate":
+ api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY")
+ # together_ai
+ elif llm_provider == "together_ai":
+ api_key = (
+ api_key
+ or litellm.togetherai_api_key
+ or get_secret("TOGETHERAI_API_KEY")
+ or get_secret("TOGETHER_AI_TOKEN")
+ )
+ return api_key
+
+
+def get_utc_datetime():
+ import datetime as dt
+ from datetime import datetime
+
+ if hasattr(dt, "UTC"):
+ return datetime.now(dt.UTC) # type: ignore
+ else:
+ return datetime.utcnow() # type: ignore
+
+
+def get_max_tokens(model: str) -> Optional[int]:
+ """
+ Get the maximum number of output tokens allowed for a given model.
+
+ Parameters:
+ model (str): The name of the model.
+
+ Returns:
+ int: The maximum number of tokens allowed for the given model.
+
+ Raises:
+ Exception: If the model is not mapped yet.
+
+ Example:
+ >>> get_max_tokens("gpt-4")
+ 8192
+ """
+
+ def _get_max_position_embeddings(model_name):
+ # Construct the URL for the config.json file
+ config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
+ try:
+ # Make the HTTP request to get the raw JSON file
+ response = litellm.module_level_client.get(config_url)
+ response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
+
+ # Parse the JSON response
+ config_json = response.json()
+ # Extract and return the max_position_embeddings
+ max_position_embeddings = config_json.get("max_position_embeddings")
+ if max_position_embeddings is not None:
+ return max_position_embeddings
+ else:
+ return None
+ except Exception:
+ return None
+
+ try:
+ if model in litellm.model_cost:
+ if "max_output_tokens" in litellm.model_cost[model]:
+ return litellm.model_cost[model]["max_output_tokens"]
+ elif "max_tokens" in litellm.model_cost[model]:
+ return litellm.model_cost[model]["max_tokens"]
+ model, custom_llm_provider, _, _ = get_llm_provider(model=model)
+ if custom_llm_provider == "huggingface":
+ max_tokens = _get_max_position_embeddings(model_name=model)
+ return max_tokens
+ if model in litellm.model_cost: # check if extracted model is in model_list
+ if "max_output_tokens" in litellm.model_cost[model]:
+ return litellm.model_cost[model]["max_output_tokens"]
+ elif "max_tokens" in litellm.model_cost[model]:
+ return litellm.model_cost[model]["max_tokens"]
+ else:
+ raise Exception()
+ return None
+ except Exception:
+ raise Exception(
+ f"Model {model} isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
+ )
+
+
+def _strip_stable_vertex_version(model_name) -> str:
+ return re.sub(r"-\d+$", "", model_name)
+
+
+def _get_base_bedrock_model(model_name) -> str:
+ """
+ Get the base model from the given model name.
+
+ Handle model names like - "us.meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
+ AND "meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
+ """
+ from litellm.llms.bedrock.common_utils import BedrockModelInfo
+
+ return BedrockModelInfo.get_base_model(model_name)
+
+
+def _strip_openai_finetune_model_name(model_name: str) -> str:
+ """
+ Strips the organization, custom suffix, and ID from an OpenAI fine-tuned model name.
+
+ input: ft:gpt-3.5-turbo:my-org:custom_suffix:id
+ output: ft:gpt-3.5-turbo
+
+ Args:
+ model_name (str): The full model name
+
+ Returns:
+ str: The stripped model name
+ """
+ return re.sub(r"(:[^:]+){3}$", "", model_name)
+
+
+def _strip_model_name(model: str, custom_llm_provider: Optional[str]) -> str:
+ if custom_llm_provider and custom_llm_provider == "bedrock":
+ stripped_bedrock_model = _get_base_bedrock_model(model_name=model)
+ return stripped_bedrock_model
+ elif custom_llm_provider and (
+ custom_llm_provider == "vertex_ai" or custom_llm_provider == "gemini"
+ ):
+ strip_version = _strip_stable_vertex_version(model_name=model)
+ return strip_version
+ elif custom_llm_provider and (custom_llm_provider == "databricks"):
+ strip_version = _strip_stable_vertex_version(model_name=model)
+ return strip_version
+ elif "ft:" in model:
+ strip_finetune = _strip_openai_finetune_model_name(model_name=model)
+ return strip_finetune
+ else:
+ return model
+
+
+def _get_model_info_from_model_cost(key: str) -> dict:
+ return litellm.model_cost[key]
+
+
+def _check_provider_match(model_info: dict, custom_llm_provider: Optional[str]) -> bool:
+ """
+ Check if the model info provider matches the custom provider.
+ """
+ if custom_llm_provider and (
+ "litellm_provider" in model_info
+ and model_info["litellm_provider"] != custom_llm_provider
+ ):
+ if custom_llm_provider == "vertex_ai" and model_info[
+ "litellm_provider"
+ ].startswith("vertex_ai"):
+ return True
+ elif custom_llm_provider == "fireworks_ai" and model_info[
+ "litellm_provider"
+ ].startswith("fireworks_ai"):
+ return True
+ elif custom_llm_provider.startswith("bedrock") and model_info[
+ "litellm_provider"
+ ].startswith("bedrock"):
+ return True
+ else:
+ return False
+
+ return True
+
+
+from typing import TypedDict
+
+
+class PotentialModelNamesAndCustomLLMProvider(TypedDict):
+ split_model: str
+ combined_model_name: str
+ stripped_model_name: str
+ combined_stripped_model_name: str
+ custom_llm_provider: str
+
+
+def _get_potential_model_names(
+ model: str, custom_llm_provider: Optional[str]
+) -> PotentialModelNamesAndCustomLLMProvider:
+ if custom_llm_provider is None:
+ # Get custom_llm_provider
+ try:
+ split_model, custom_llm_provider, _, _ = get_llm_provider(model=model)
+ except Exception:
+ split_model = model
+ combined_model_name = model
+ stripped_model_name = _strip_model_name(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ combined_stripped_model_name = stripped_model_name
+ elif custom_llm_provider and model.startswith(
+ custom_llm_provider + "/"
+ ): # handle case where custom_llm_provider is provided and model starts with custom_llm_provider
+ split_model = model.split("/", 1)[1]
+ combined_model_name = model
+ stripped_model_name = _strip_model_name(
+ model=split_model, custom_llm_provider=custom_llm_provider
+ )
+ combined_stripped_model_name = "{}/{}".format(
+ custom_llm_provider, stripped_model_name
+ )
+ else:
+ split_model = model
+ combined_model_name = "{}/{}".format(custom_llm_provider, model)
+ stripped_model_name = _strip_model_name(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ combined_stripped_model_name = "{}/{}".format(
+ custom_llm_provider,
+ stripped_model_name,
+ )
+
+ return PotentialModelNamesAndCustomLLMProvider(
+ split_model=split_model,
+ combined_model_name=combined_model_name,
+ stripped_model_name=stripped_model_name,
+ combined_stripped_model_name=combined_stripped_model_name,
+ custom_llm_provider=cast(str, custom_llm_provider),
+ )
+
+
+def _get_max_position_embeddings(model_name: str) -> Optional[int]:
+ # Construct the URL for the config.json file
+ config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
+
+ try:
+ # Make the HTTP request to get the raw JSON file
+ response = litellm.module_level_client.get(config_url)
+ response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
+
+ # Parse the JSON response
+ config_json = response.json()
+
+ # Extract and return the max_position_embeddings
+ max_position_embeddings = config_json.get("max_position_embeddings")
+
+ if max_position_embeddings is not None:
+ return max_position_embeddings
+ else:
+ return None
+ except Exception:
+ return None
+
+
+def _cached_get_model_info_helper(
+ model: str, custom_llm_provider: Optional[str]
+) -> ModelInfoBase:
+ """
+ _get_model_info_helper wrapped with lru_cache
+
+ Speed Optimization to hit high RPS
+ """
+ return _get_model_info_helper(model=model, custom_llm_provider=custom_llm_provider)
+
+
+def get_provider_info(
+ model: str, custom_llm_provider: Optional[str]
+) -> Optional[ProviderSpecificModelInfo]:
+ ## PROVIDER-SPECIFIC INFORMATION
+ # if custom_llm_provider == "predibase":
+ # _model_info["supports_response_schema"] = True
+ provider_config: Optional[BaseLLMModelInfo] = None
+ if custom_llm_provider and custom_llm_provider in LlmProvidersSet:
+ # Check if the provider string exists in LlmProviders enum
+ provider_config = ProviderConfigManager.get_provider_model_info(
+ model=model, provider=LlmProviders(custom_llm_provider)
+ )
+
+ model_info: Optional[ProviderSpecificModelInfo] = None
+ if provider_config:
+ model_info = provider_config.get_provider_info(model=model)
+
+ return model_info
+
+
+def _get_model_info_helper( # noqa: PLR0915
+ model: str, custom_llm_provider: Optional[str] = None
+) -> ModelInfoBase:
+ """
+ Helper for 'get_model_info'. Separated out to avoid infinite loop caused by returning 'supported_openai_param's
+ """
+ try:
+ azure_llms = {**litellm.azure_llms, **litellm.azure_embedding_models}
+ if model in azure_llms:
+ model = azure_llms[model]
+ if custom_llm_provider is not None and custom_llm_provider == "vertex_ai_beta":
+ custom_llm_provider = "vertex_ai"
+ if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
+ if "meta/" + model in litellm.vertex_llama3_models:
+ model = "meta/" + model
+ elif model + "@latest" in litellm.vertex_mistral_models:
+ model = model + "@latest"
+ elif model + "@latest" in litellm.vertex_ai_ai21_models:
+ model = model + "@latest"
+ ##########################
+ potential_model_names = _get_potential_model_names(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ verbose_logger.debug(
+ f"checking potential_model_names in litellm.model_cost: {potential_model_names}"
+ )
+
+ combined_model_name = potential_model_names["combined_model_name"]
+ stripped_model_name = potential_model_names["stripped_model_name"]
+ combined_stripped_model_name = potential_model_names[
+ "combined_stripped_model_name"
+ ]
+ split_model = potential_model_names["split_model"]
+ custom_llm_provider = potential_model_names["custom_llm_provider"]
+ #########################
+ if custom_llm_provider == "huggingface":
+ max_tokens = _get_max_position_embeddings(model_name=model)
+ return ModelInfoBase(
+ key=model,
+ max_tokens=max_tokens, # type: ignore
+ max_input_tokens=None,
+ max_output_tokens=None,
+ input_cost_per_token=0,
+ output_cost_per_token=0,
+ litellm_provider="huggingface",
+ mode="chat",
+ supports_system_messages=None,
+ supports_response_schema=None,
+ supports_function_calling=None,
+ supports_tool_choice=None,
+ supports_assistant_prefill=None,
+ supports_prompt_caching=None,
+ supports_pdf_input=None,
+ )
+ elif custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat":
+ return litellm.OllamaConfig().get_model_info(model)
+ else:
+ """
+ Check if: (in order of specificity)
+ 1. 'custom_llm_provider/model' in litellm.model_cost. Checks "groq/llama3-8b-8192" if model="llama3-8b-8192" and custom_llm_provider="groq"
+ 2. 'model' in litellm.model_cost. Checks "gemini-1.5-pro-002" in litellm.model_cost if model="gemini-1.5-pro-002" and custom_llm_provider=None
+ 3. 'combined_stripped_model_name' in litellm.model_cost. Checks if 'gemini/gemini-1.5-flash' in model map, if 'gemini/gemini-1.5-flash-001' given.
+ 4. 'stripped_model_name' in litellm.model_cost. Checks if 'ft:gpt-3.5-turbo' in model map, if 'ft:gpt-3.5-turbo:my-org:custom_suffix:id' given.
+ 5. 'split_model' in litellm.model_cost. Checks "llama3-8b-8192" in litellm.model_cost if model="groq/llama3-8b-8192"
+ """
+
+ _model_info: Optional[Dict[str, Any]] = None
+ key: Optional[str] = None
+
+ if combined_model_name in litellm.model_cost:
+ key = combined_model_name
+ _model_info = _get_model_info_from_model_cost(key=key)
+ if not _check_provider_match(
+ model_info=_model_info, custom_llm_provider=custom_llm_provider
+ ):
+ _model_info = None
+ if _model_info is None and model in litellm.model_cost:
+
+ key = model
+ _model_info = _get_model_info_from_model_cost(key=key)
+ if not _check_provider_match(
+ model_info=_model_info, custom_llm_provider=custom_llm_provider
+ ):
+ _model_info = None
+ if (
+ _model_info is None
+ and combined_stripped_model_name in litellm.model_cost
+ ):
+
+ key = combined_stripped_model_name
+ _model_info = _get_model_info_from_model_cost(key=key)
+ if not _check_provider_match(
+ model_info=_model_info, custom_llm_provider=custom_llm_provider
+ ):
+ _model_info = None
+ if _model_info is None and stripped_model_name in litellm.model_cost:
+
+ key = stripped_model_name
+ _model_info = _get_model_info_from_model_cost(key=key)
+ if not _check_provider_match(
+ model_info=_model_info, custom_llm_provider=custom_llm_provider
+ ):
+ _model_info = None
+ if _model_info is None and split_model in litellm.model_cost:
+
+ key = split_model
+ _model_info = _get_model_info_from_model_cost(key=key)
+ if not _check_provider_match(
+ model_info=_model_info, custom_llm_provider=custom_llm_provider
+ ):
+ _model_info = None
+
+ if _model_info is None or key is None:
+ raise ValueError(
+ "This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
+ )
+
+ _input_cost_per_token: Optional[float] = _model_info.get(
+ "input_cost_per_token"
+ )
+ if _input_cost_per_token is None:
+ # default value to 0, be noisy about this
+ verbose_logger.debug(
+ "model={}, custom_llm_provider={} has no input_cost_per_token in model_cost_map. Defaulting to 0.".format(
+ model, custom_llm_provider
+ )
+ )
+ _input_cost_per_token = 0
+
+ _output_cost_per_token: Optional[float] = _model_info.get(
+ "output_cost_per_token"
+ )
+ if _output_cost_per_token is None:
+ # default value to 0, be noisy about this
+ verbose_logger.debug(
+ "model={}, custom_llm_provider={} has no output_cost_per_token in model_cost_map. Defaulting to 0.".format(
+ model, custom_llm_provider
+ )
+ )
+ _output_cost_per_token = 0
+
+ return ModelInfoBase(
+ key=key,
+ max_tokens=_model_info.get("max_tokens", None),
+ max_input_tokens=_model_info.get("max_input_tokens", None),
+ max_output_tokens=_model_info.get("max_output_tokens", None),
+ input_cost_per_token=_input_cost_per_token,
+ cache_creation_input_token_cost=_model_info.get(
+ "cache_creation_input_token_cost", None
+ ),
+ cache_read_input_token_cost=_model_info.get(
+ "cache_read_input_token_cost", None
+ ),
+ input_cost_per_character=_model_info.get(
+ "input_cost_per_character", None
+ ),
+ input_cost_per_token_above_128k_tokens=_model_info.get(
+ "input_cost_per_token_above_128k_tokens", None
+ ),
+ input_cost_per_query=_model_info.get("input_cost_per_query", None),
+ input_cost_per_second=_model_info.get("input_cost_per_second", None),
+ input_cost_per_audio_token=_model_info.get(
+ "input_cost_per_audio_token", None
+ ),
+ input_cost_per_token_batches=_model_info.get(
+ "input_cost_per_token_batches"
+ ),
+ output_cost_per_token_batches=_model_info.get(
+ "output_cost_per_token_batches"
+ ),
+ output_cost_per_token=_output_cost_per_token,
+ output_cost_per_audio_token=_model_info.get(
+ "output_cost_per_audio_token", None
+ ),
+ output_cost_per_character=_model_info.get(
+ "output_cost_per_character", None
+ ),
+ output_cost_per_token_above_128k_tokens=_model_info.get(
+ "output_cost_per_token_above_128k_tokens", None
+ ),
+ output_cost_per_character_above_128k_tokens=_model_info.get(
+ "output_cost_per_character_above_128k_tokens", None
+ ),
+ output_cost_per_second=_model_info.get("output_cost_per_second", None),
+ output_cost_per_image=_model_info.get("output_cost_per_image", None),
+ output_vector_size=_model_info.get("output_vector_size", None),
+ litellm_provider=_model_info.get(
+ "litellm_provider", custom_llm_provider
+ ),
+ mode=_model_info.get("mode"), # type: ignore
+ supports_system_messages=_model_info.get(
+ "supports_system_messages", None
+ ),
+ supports_response_schema=_model_info.get(
+ "supports_response_schema", None
+ ),
+ supports_vision=_model_info.get("supports_vision", False),
+ supports_function_calling=_model_info.get(
+ "supports_function_calling", False
+ ),
+ supports_tool_choice=_model_info.get("supports_tool_choice", False),
+ supports_assistant_prefill=_model_info.get(
+ "supports_assistant_prefill", False
+ ),
+ supports_prompt_caching=_model_info.get(
+ "supports_prompt_caching", False
+ ),
+ supports_audio_input=_model_info.get("supports_audio_input", False),
+ supports_audio_output=_model_info.get("supports_audio_output", False),
+ supports_pdf_input=_model_info.get("supports_pdf_input", False),
+ supports_embedding_image_input=_model_info.get(
+ "supports_embedding_image_input", False
+ ),
+ supports_native_streaming=_model_info.get(
+ "supports_native_streaming", None
+ ),
+ tpm=_model_info.get("tpm", None),
+ rpm=_model_info.get("rpm", None),
+ )
+ except Exception as e:
+ verbose_logger.debug(f"Error getting model info: {e}")
+ if "OllamaError" in str(e):
+ raise e
+ raise Exception(
+ "This model isn't mapped yet. model={}, custom_llm_provider={}. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json.".format(
+ model, custom_llm_provider
+ )
+ )
+
+
+def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> ModelInfo:
+ """
+ Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token for a given model.
+
+ Parameters:
+ - model (str): The name of the model.
+ - custom_llm_provider (str | null): the provider used for the model. If provided, used to check if the litellm model info is for that provider.
+
+ Returns:
+ dict: A dictionary containing the following information:
+ key: Required[str] # the key in litellm.model_cost which is returned
+ max_tokens: Required[Optional[int]]
+ max_input_tokens: Required[Optional[int]]
+ max_output_tokens: Required[Optional[int]]
+ input_cost_per_token: Required[float]
+ input_cost_per_character: Optional[float] # only for vertex ai models
+ input_cost_per_token_above_128k_tokens: Optional[float] # only for vertex ai models
+ input_cost_per_character_above_128k_tokens: Optional[
+ float
+ ] # only for vertex ai models
+ input_cost_per_query: Optional[float] # only for rerank models
+ input_cost_per_image: Optional[float] # only for vertex ai models
+ input_cost_per_audio_token: Optional[float]
+ input_cost_per_audio_per_second: Optional[float] # only for vertex ai models
+ input_cost_per_video_per_second: Optional[float] # only for vertex ai models
+ output_cost_per_token: Required[float]
+ output_cost_per_audio_token: Optional[float]
+ output_cost_per_character: Optional[float] # only for vertex ai models
+ output_cost_per_token_above_128k_tokens: Optional[
+ float
+ ] # only for vertex ai models
+ output_cost_per_character_above_128k_tokens: Optional[
+ float
+ ] # only for vertex ai models
+ output_cost_per_image: Optional[float]
+ output_vector_size: Optional[int]
+ output_cost_per_video_per_second: Optional[float] # only for vertex ai models
+ output_cost_per_audio_per_second: Optional[float] # only for vertex ai models
+ litellm_provider: Required[str]
+ mode: Required[
+ Literal[
+ "completion", "embedding", "image_generation", "chat", "audio_transcription"
+ ]
+ ]
+ supported_openai_params: Required[Optional[List[str]]]
+ supports_system_messages: Optional[bool]
+ supports_response_schema: Optional[bool]
+ supports_vision: Optional[bool]
+ supports_function_calling: Optional[bool]
+ supports_tool_choice: Optional[bool]
+ supports_prompt_caching: Optional[bool]
+ supports_audio_input: Optional[bool]
+ supports_audio_output: Optional[bool]
+ supports_pdf_input: Optional[bool]
+ Raises:
+ Exception: If the model is not mapped yet.
+
+ Example:
+ >>> get_model_info("gpt-4")
+ {
+ "max_tokens": 8192,
+ "input_cost_per_token": 0.00003,
+ "output_cost_per_token": 0.00006,
+ "litellm_provider": "openai",
+ "mode": "chat",
+ "supported_openai_params": ["temperature", "max_tokens", "top_p", "frequency_penalty", "presence_penalty"]
+ }
+ """
+ supported_openai_params = litellm.get_supported_openai_params(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ _model_info = _get_model_info_helper(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ )
+
+ verbose_logger.debug(f"model_info: {_model_info}")
+
+ returned_model_info = ModelInfo(
+ **_model_info, supported_openai_params=supported_openai_params
+ )
+
+ return returned_model_info
+
+
+def json_schema_type(python_type_name: str):
+ """Converts standard python types to json schema types
+
+ Parameters
+ ----------
+ python_type_name : str
+ __name__ of type
+
+ Returns
+ -------
+ str
+ a standard JSON schema type, "string" if not recognized.
+ """
+ python_to_json_schema_types = {
+ str.__name__: "string",
+ int.__name__: "integer",
+ float.__name__: "number",
+ bool.__name__: "boolean",
+ list.__name__: "array",
+ dict.__name__: "object",
+ "NoneType": "null",
+ }
+
+ return python_to_json_schema_types.get(python_type_name, "string")
+
+
+def function_to_dict(input_function): # noqa: C901
+ """Using type hints and numpy-styled docstring,
+ produce a dictionnary usable for OpenAI function calling
+
+ Parameters
+ ----------
+ input_function : function
+ A function with a numpy-style docstring
+
+ Returns
+ -------
+ dictionnary
+ A dictionnary to add to the list passed to `functions` parameter of `litellm.completion`
+ """
+ # Get function name and docstring
+ try:
+ import inspect
+ from ast import literal_eval
+
+ from numpydoc.docscrape import NumpyDocString
+ except Exception as e:
+ raise e
+
+ name = input_function.__name__
+ docstring = inspect.getdoc(input_function)
+ numpydoc = NumpyDocString(docstring)
+ description = "\n".join([s.strip() for s in numpydoc["Summary"]])
+
+ # Get function parameters and their types from annotations and docstring
+ parameters = {}
+ required_params = []
+ param_info = inspect.signature(input_function).parameters
+
+ for param_name, param in param_info.items():
+ if hasattr(param, "annotation"):
+ param_type = json_schema_type(param.annotation.__name__)
+ else:
+ param_type = None
+ param_description = None
+ param_enum = None
+
+ # Try to extract param description from docstring using numpydoc
+ for param_data in numpydoc["Parameters"]:
+ if param_data.name == param_name:
+ if hasattr(param_data, "type"):
+ # replace type from docstring rather than annotation
+ param_type = param_data.type
+ if "optional" in param_type:
+ param_type = param_type.split(",")[0]
+ elif "{" in param_type:
+ # may represent a set of acceptable values
+ # translating as enum for function calling
+ try:
+ param_enum = str(list(literal_eval(param_type)))
+ param_type = "string"
+ except Exception:
+ pass
+ param_type = json_schema_type(param_type)
+ param_description = "\n".join([s.strip() for s in param_data.desc])
+
+ param_dict = {
+ "type": param_type,
+ "description": param_description,
+ "enum": param_enum,
+ }
+
+ parameters[param_name] = dict(
+ [(k, v) for k, v in param_dict.items() if isinstance(v, str)]
+ )
+
+ # Check if the parameter has no default value (i.e., it's required)
+ if param.default == param.empty:
+ required_params.append(param_name)
+
+ # Create the dictionary
+ result = {
+ "name": name,
+ "description": description,
+ "parameters": {
+ "type": "object",
+ "properties": parameters,
+ },
+ }
+
+ # Add "required" key if there are required parameters
+ if required_params:
+ result["parameters"]["required"] = required_params
+
+ return result
+
+
+def modify_url(original_url, new_path):
+ url = httpx.URL(original_url)
+ modified_url = url.copy_with(path=new_path)
+ return str(modified_url)
+
+
+def load_test_model(
+ model: str,
+ custom_llm_provider: str = "",
+ api_base: str = "",
+ prompt: str = "",
+ num_calls: int = 0,
+ force_timeout: int = 0,
+):
+ test_prompt = "Hey, how's it going"
+ test_calls = 100
+ if prompt:
+ test_prompt = prompt
+ if num_calls:
+ test_calls = num_calls
+ messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
+ start_time = time.time()
+ try:
+ litellm.batch_completion(
+ model=model,
+ messages=messages,
+ custom_llm_provider=custom_llm_provider,
+ api_base=api_base,
+ force_timeout=force_timeout,
+ )
+ end_time = time.time()
+ response_time = end_time - start_time
+ return {
+ "total_response_time": response_time,
+ "calls_made": 100,
+ "status": "success",
+ "exception": None,
+ }
+ except Exception as e:
+ end_time = time.time()
+ response_time = end_time - start_time
+ return {
+ "total_response_time": response_time,
+ "calls_made": 100,
+ "status": "failed",
+ "exception": e,
+ }
+
+
+def get_provider_fields(custom_llm_provider: str) -> List[ProviderField]:
+ """Return the fields required for each provider"""
+
+ if custom_llm_provider == "databricks":
+ return litellm.DatabricksConfig().get_required_params()
+
+ elif custom_llm_provider == "ollama":
+ return litellm.OllamaConfig().get_required_params()
+
+ elif custom_llm_provider == "azure_ai":
+ return litellm.AzureAIStudioConfig().get_required_params()
+
+ else:
+ return []
+
+
+def create_proxy_transport_and_mounts():
+ proxies = {
+ key: None if url is None else Proxy(url=url)
+ for key, url in get_environment_proxies().items()
+ }
+
+ sync_proxy_mounts = {}
+ async_proxy_mounts = {}
+
+ # Retrieve NO_PROXY environment variable
+ no_proxy = os.getenv("NO_PROXY", None)
+ no_proxy_urls = no_proxy.split(",") if no_proxy else []
+
+ for key, proxy in proxies.items():
+ if proxy is None:
+ sync_proxy_mounts[key] = httpx.HTTPTransport()
+ async_proxy_mounts[key] = httpx.AsyncHTTPTransport()
+ else:
+ sync_proxy_mounts[key] = httpx.HTTPTransport(proxy=proxy)
+ async_proxy_mounts[key] = httpx.AsyncHTTPTransport(proxy=proxy)
+
+ for url in no_proxy_urls:
+ sync_proxy_mounts[url] = httpx.HTTPTransport()
+ async_proxy_mounts[url] = httpx.AsyncHTTPTransport()
+
+ return sync_proxy_mounts, async_proxy_mounts
+
+
+def validate_environment( # noqa: PLR0915
+ model: Optional[str] = None,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+) -> dict:
+ """
+ Checks if the environment variables are valid for the given model.
+
+ Args:
+ model (Optional[str]): The name of the model. Defaults to None.
+ api_key (Optional[str]): If the user passed in an api key, of their own.
+
+ Returns:
+ dict: A dictionary containing the following keys:
+ - keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
+ - missing_keys (List[str]): A list of missing keys in the environment.
+ """
+ keys_in_environment = False
+ missing_keys: List[str] = []
+
+ if model is None:
+ return {
+ "keys_in_environment": keys_in_environment,
+ "missing_keys": missing_keys,
+ }
+ ## EXTRACT LLM PROVIDER - if model name provided
+ try:
+ _, custom_llm_provider, _, _ = get_llm_provider(model=model)
+ except Exception:
+ custom_llm_provider = None
+
+ if custom_llm_provider:
+ if custom_llm_provider == "openai":
+ if "OPENAI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("OPENAI_API_KEY")
+ elif custom_llm_provider == "azure":
+ if (
+ "AZURE_API_BASE" in os.environ
+ and "AZURE_API_VERSION" in os.environ
+ and "AZURE_API_KEY" in os.environ
+ ):
+ keys_in_environment = True
+ else:
+ missing_keys.extend(
+ ["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]
+ )
+ elif custom_llm_provider == "anthropic":
+ if "ANTHROPIC_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("ANTHROPIC_API_KEY")
+ elif custom_llm_provider == "cohere":
+ if "COHERE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("COHERE_API_KEY")
+ elif custom_llm_provider == "replicate":
+ if "REPLICATE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("REPLICATE_API_KEY")
+ elif custom_llm_provider == "openrouter":
+ if "OPENROUTER_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("OPENROUTER_API_KEY")
+ elif custom_llm_provider == "vertex_ai":
+ if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
+ elif custom_llm_provider == "huggingface":
+ if "HUGGINGFACE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("HUGGINGFACE_API_KEY")
+ elif custom_llm_provider == "ai21":
+ if "AI21_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("AI21_API_KEY")
+ elif custom_llm_provider == "together_ai":
+ if "TOGETHERAI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("TOGETHERAI_API_KEY")
+ elif custom_llm_provider == "aleph_alpha":
+ if "ALEPH_ALPHA_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("ALEPH_ALPHA_API_KEY")
+ elif custom_llm_provider == "baseten":
+ if "BASETEN_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("BASETEN_API_KEY")
+ elif custom_llm_provider == "nlp_cloud":
+ if "NLP_CLOUD_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("NLP_CLOUD_API_KEY")
+ elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker":
+ if (
+ "AWS_ACCESS_KEY_ID" in os.environ
+ and "AWS_SECRET_ACCESS_KEY" in os.environ
+ ):
+ keys_in_environment = True
+ else:
+ missing_keys.append("AWS_ACCESS_KEY_ID")
+ missing_keys.append("AWS_SECRET_ACCESS_KEY")
+ elif custom_llm_provider in ["ollama", "ollama_chat"]:
+ if "OLLAMA_API_BASE" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("OLLAMA_API_BASE")
+ elif custom_llm_provider == "anyscale":
+ if "ANYSCALE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("ANYSCALE_API_KEY")
+ elif custom_llm_provider == "deepinfra":
+ if "DEEPINFRA_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("DEEPINFRA_API_KEY")
+ elif custom_llm_provider == "gemini":
+ if "GEMINI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("GEMINI_API_KEY")
+ elif custom_llm_provider == "groq":
+ if "GROQ_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("GROQ_API_KEY")
+ elif custom_llm_provider == "nvidia_nim":
+ if "NVIDIA_NIM_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("NVIDIA_NIM_API_KEY")
+ elif custom_llm_provider == "cerebras":
+ if "CEREBRAS_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("CEREBRAS_API_KEY")
+ elif custom_llm_provider == "xai":
+ if "XAI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("XAI_API_KEY")
+ elif custom_llm_provider == "ai21_chat":
+ if "AI21_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("AI21_API_KEY")
+ elif custom_llm_provider == "volcengine":
+ if "VOLCENGINE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("VOLCENGINE_API_KEY")
+ elif (
+ custom_llm_provider == "codestral"
+ or custom_llm_provider == "text-completion-codestral"
+ ):
+ if "CODESTRAL_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("CODESTRAL_API_KEY")
+ elif custom_llm_provider == "deepseek":
+ if "DEEPSEEK_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("DEEPSEEK_API_KEY")
+ elif custom_llm_provider == "mistral":
+ if "MISTRAL_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("MISTRAL_API_KEY")
+ elif custom_llm_provider == "palm":
+ if "PALM_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("PALM_API_KEY")
+ elif custom_llm_provider == "perplexity":
+ if "PERPLEXITYAI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("PERPLEXITYAI_API_KEY")
+ elif custom_llm_provider == "voyage":
+ if "VOYAGE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("VOYAGE_API_KEY")
+ elif custom_llm_provider == "fireworks_ai":
+ if (
+ "FIREWORKS_AI_API_KEY" in os.environ
+ or "FIREWORKS_API_KEY" in os.environ
+ or "FIREWORKSAI_API_KEY" in os.environ
+ or "FIREWORKS_AI_TOKEN" in os.environ
+ ):
+ keys_in_environment = True
+ else:
+ missing_keys.append("FIREWORKS_AI_API_KEY")
+ elif custom_llm_provider == "cloudflare":
+ if "CLOUDFLARE_API_KEY" in os.environ and (
+ "CLOUDFLARE_ACCOUNT_ID" in os.environ
+ or "CLOUDFLARE_API_BASE" in os.environ
+ ):
+ keys_in_environment = True
+ else:
+ missing_keys.append("CLOUDFLARE_API_KEY")
+ missing_keys.append("CLOUDFLARE_API_BASE")
+ else:
+ ## openai - chatcompletion + text completion
+ if (
+ model in litellm.open_ai_chat_completion_models
+ or model in litellm.open_ai_text_completion_models
+ or model in litellm.open_ai_embedding_models
+ or model in litellm.openai_image_generation_models
+ ):
+ if "OPENAI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("OPENAI_API_KEY")
+ ## anthropic
+ elif model in litellm.anthropic_models:
+ if "ANTHROPIC_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("ANTHROPIC_API_KEY")
+ ## cohere
+ elif model in litellm.cohere_models:
+ if "COHERE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("COHERE_API_KEY")
+ ## replicate
+ elif model in litellm.replicate_models:
+ if "REPLICATE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("REPLICATE_API_KEY")
+ ## openrouter
+ elif model in litellm.openrouter_models:
+ if "OPENROUTER_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("OPENROUTER_API_KEY")
+ ## vertex - text + chat models
+ elif (
+ model in litellm.vertex_chat_models
+ or model in litellm.vertex_text_models
+ or model in litellm.models_by_provider["vertex_ai"]
+ ):
+ if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
+ ## huggingface
+ elif model in litellm.huggingface_models:
+ if "HUGGINGFACE_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("HUGGINGFACE_API_KEY")
+ ## ai21
+ elif model in litellm.ai21_models:
+ if "AI21_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("AI21_API_KEY")
+ ## together_ai
+ elif model in litellm.together_ai_models:
+ if "TOGETHERAI_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("TOGETHERAI_API_KEY")
+ ## aleph_alpha
+ elif model in litellm.aleph_alpha_models:
+ if "ALEPH_ALPHA_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("ALEPH_ALPHA_API_KEY")
+ ## baseten
+ elif model in litellm.baseten_models:
+ if "BASETEN_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("BASETEN_API_KEY")
+ ## nlp_cloud
+ elif model in litellm.nlp_cloud_models:
+ if "NLP_CLOUD_API_KEY" in os.environ:
+ keys_in_environment = True
+ else:
+ missing_keys.append("NLP_CLOUD_API_KEY")
+
+ if api_key is not None:
+ new_missing_keys = []
+ for key in missing_keys:
+ if "api_key" not in key.lower():
+ new_missing_keys.append(key)
+ missing_keys = new_missing_keys
+
+ if api_base is not None:
+ new_missing_keys = []
+ for key in missing_keys:
+ if "api_base" not in key.lower():
+ new_missing_keys.append(key)
+ missing_keys = new_missing_keys
+
+ if len(missing_keys) == 0: # no missing keys
+ keys_in_environment = True
+
+ return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}
+
+
+def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call
+ return litellm.acompletion(*args, **kwargs)
+
+
+def prompt_token_calculator(model, messages):
+ # use tiktoken or anthropic's tokenizer depending on the model
+ text = " ".join(message["content"] for message in messages)
+ num_tokens = 0
+ if "claude" in model:
+ try:
+ import anthropic
+ except Exception:
+ Exception("Anthropic import failed please run `pip install anthropic`")
+ from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
+
+ anthropic_obj = Anthropic()
+ num_tokens = anthropic_obj.count_tokens(text) # type: ignore
+ else:
+ num_tokens = len(encoding.encode(text))
+ return num_tokens
+
+
+def valid_model(model):
+ try:
+ # for a given model name, check if the user has the right permissions to access the model
+ if (
+ model in litellm.open_ai_chat_completion_models
+ or model in litellm.open_ai_text_completion_models
+ ):
+ openai.models.retrieve(model)
+ else:
+ messages = [{"role": "user", "content": "Hello World"}]
+ litellm.completion(model=model, messages=messages)
+ except Exception:
+ raise BadRequestError(message="", model=model, llm_provider="")
+
+
+def check_valid_key(model: str, api_key: str):
+ """
+ Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10
+
+ Args:
+ model (str): The name of the model to check the API key against.
+ api_key (str): The API key to be checked.
+
+ Returns:
+ bool: True if the API key is valid for the model, False otherwise.
+ """
+ messages = [{"role": "user", "content": "Hey, how's it going?"}]
+ try:
+ litellm.completion(
+ model=model, messages=messages, api_key=api_key, max_tokens=10
+ )
+ return True
+ except AuthenticationError:
+ return False
+ except Exception:
+ return False
+
+
+def _should_retry(status_code: int):
+ """
+ Retries on 408, 409, 429 and 500 errors.
+
+ Any client error in the 400-499 range that isn't explicitly handled (such as 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.) would not trigger a retry.
+
+ Reimplementation of openai's should retry logic, since that one can't be imported.
+ https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
+ """
+ # If the server explicitly says whether or not to retry, obey.
+ # Retry on request timeouts.
+ if status_code == 408:
+ return True
+
+ # Retry on lock timeouts.
+ if status_code == 409:
+ return True
+
+ # Retry on rate limits.
+ if status_code == 429:
+ return True
+
+ # Retry internal errors.
+ if status_code >= 500:
+ return True
+
+ return False
+
+
+def _get_retry_after_from_exception_header(
+ response_headers: Optional[httpx.Headers] = None,
+):
+ """
+ Reimplementation of openai's calculate retry after, since that one can't be imported.
+ https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
+ """
+ try:
+ import email # openai import
+
+ # About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
+ #
+ # <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for
+ # details.
+ if response_headers is not None:
+ retry_header = response_headers.get("retry-after")
+ try:
+ retry_after = int(retry_header)
+ except Exception:
+ retry_date_tuple = email.utils.parsedate_tz(retry_header) # type: ignore
+ if retry_date_tuple is None:
+ retry_after = -1
+ else:
+ retry_date = email.utils.mktime_tz(retry_date_tuple) # type: ignore
+ retry_after = int(retry_date - time.time())
+ else:
+ retry_after = -1
+
+ return retry_after
+
+ except Exception:
+ retry_after = -1
+
+
+def _calculate_retry_after(
+ remaining_retries: int,
+ max_retries: int,
+ response_headers: Optional[httpx.Headers] = None,
+ min_timeout: int = 0,
+) -> Union[float, int]:
+ retry_after = _get_retry_after_from_exception_header(response_headers)
+
+ # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
+ if retry_after is not None and 0 < retry_after <= 60:
+ return retry_after
+
+ initial_retry_delay = 0.5
+ max_retry_delay = 8.0
+ nb_retries = max_retries - remaining_retries
+
+ # Apply exponential backoff, but not more than the max.
+ sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay)
+
+ # Apply some jitter, plus-or-minus half a second.
+ jitter = 1 - 0.25 * random.random()
+ timeout = sleep_seconds * jitter
+ return timeout if timeout >= min_timeout else min_timeout
+
+
+# custom prompt helper function
+def register_prompt_template(
+ model: str,
+ roles: dict = {},
+ initial_prompt_value: str = "",
+ final_prompt_value: str = "",
+ tokenizer_config: dict = {},
+):
+ """
+ Register a prompt template to follow your custom format for a given model
+
+ Args:
+ model (str): The name of the model.
+ roles (dict): A dictionary mapping roles to their respective prompt values.
+ initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
+ final_prompt_value (str, optional): The final prompt value. Defaults to "".
+
+ Returns:
+ dict: The updated custom prompt dictionary.
+ Example usage:
+ ```
+ import litellm
+ litellm.register_prompt_template(
+ model="llama-2",
+ initial_prompt_value="You are a good assistant" # [OPTIONAL]
+ roles={
+ "system": {
+ "pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
+ "post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
+ },
+ "user": {
+ "pre_message": "[INST] ", # [OPTIONAL]
+ "post_message": " [/INST]" # [OPTIONAL]
+ },
+ "assistant": {
+ "pre_message": "\n" # [OPTIONAL]
+ "post_message": "\n" # [OPTIONAL]
+ }
+ }
+ final_prompt_value="Now answer as best you can:" # [OPTIONAL]
+ )
+ ```
+ """
+ complete_model = model
+ potential_models = [complete_model]
+ try:
+ model = get_llm_provider(model=model)[0]
+ potential_models.append(model)
+ except Exception:
+ pass
+ if tokenizer_config:
+ for m in potential_models:
+ litellm.known_tokenizer_config[m] = {
+ "tokenizer": tokenizer_config,
+ "status": "success",
+ }
+ else:
+ for m in potential_models:
+ litellm.custom_prompt_dict[m] = {
+ "roles": roles,
+ "initial_prompt_value": initial_prompt_value,
+ "final_prompt_value": final_prompt_value,
+ }
+
+ return litellm.custom_prompt_dict
+
+
+class TextCompletionStreamWrapper:
+ def __init__(
+ self,
+ completion_stream,
+ model,
+ stream_options: Optional[dict] = None,
+ custom_llm_provider: Optional[str] = None,
+ ):
+ self.completion_stream = completion_stream
+ self.model = model
+ self.stream_options = stream_options
+ self.custom_llm_provider = custom_llm_provider
+
+ def __iter__(self):
+ return self
+
+ def __aiter__(self):
+ return self
+
+ def convert_to_text_completion_object(self, chunk: ModelResponse):
+ try:
+ response = TextCompletionResponse()
+ response["id"] = chunk.get("id", None)
+ response["object"] = "text_completion"
+ response["created"] = chunk.get("created", None)
+ response["model"] = chunk.get("model", None)
+ text_choices = TextChoices()
+ if isinstance(
+ chunk, Choices
+ ): # chunk should always be of type StreamingChoices
+ raise Exception
+ text_choices["text"] = chunk["choices"][0]["delta"]["content"]
+ text_choices["index"] = chunk["choices"][0]["index"]
+ text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
+ response["choices"] = [text_choices]
+
+ # only pass usage when stream_options["include_usage"] is True
+ if (
+ self.stream_options
+ and self.stream_options.get("include_usage", False) is True
+ ):
+ response["usage"] = chunk.get("usage", None)
+
+ return response
+ except Exception as e:
+ raise Exception(
+ f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
+ )
+
+ def __next__(self):
+ # model_response = ModelResponse(stream=True, model=self.model)
+ TextCompletionResponse()
+ try:
+ for chunk in self.completion_stream:
+ if chunk == "None" or chunk is None:
+ raise Exception
+ processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
+ return processed_chunk
+ raise StopIteration
+ except StopIteration:
+ raise StopIteration
+ except Exception as e:
+ raise exception_type(
+ model=self.model,
+ custom_llm_provider=self.custom_llm_provider or "",
+ original_exception=e,
+ completion_kwargs={},
+ extra_kwargs={},
+ )
+
+ async def __anext__(self):
+ try:
+ async for chunk in self.completion_stream:
+ if chunk == "None" or chunk is None:
+ raise Exception
+ processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
+ return processed_chunk
+ raise StopIteration
+ except StopIteration:
+ raise StopAsyncIteration
+
+
+def mock_completion_streaming_obj(
+ model_response, mock_response, model, n: Optional[int] = None
+):
+ if isinstance(mock_response, litellm.MockException):
+ raise mock_response
+ for i in range(0, len(mock_response), 3):
+ completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
+ if n is None:
+ model_response.choices[0].delta = completion_obj
+ else:
+ _all_choices = []
+ for j in range(n):
+ _streaming_choice = litellm.utils.StreamingChoices(
+ index=j,
+ delta=litellm.utils.Delta(
+ role="assistant", content=mock_response[i : i + 3]
+ ),
+ )
+ _all_choices.append(_streaming_choice)
+ model_response.choices = _all_choices
+ yield model_response
+
+
+async def async_mock_completion_streaming_obj(
+ model_response, mock_response, model, n: Optional[int] = None
+):
+ if isinstance(mock_response, litellm.MockException):
+ raise mock_response
+ for i in range(0, len(mock_response), 3):
+ completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
+ if n is None:
+ model_response.choices[0].delta = completion_obj
+ else:
+ _all_choices = []
+ for j in range(n):
+ _streaming_choice = litellm.utils.StreamingChoices(
+ index=j,
+ delta=litellm.utils.Delta(
+ role="assistant", content=mock_response[i : i + 3]
+ ),
+ )
+ _all_choices.append(_streaming_choice)
+ model_response.choices = _all_choices
+ yield model_response
+
+
+########## Reading Config File ############################
+def read_config_args(config_path) -> dict:
+ try:
+ import os
+
+ os.getcwd()
+ with open(config_path, "r") as config_file:
+ config = json.load(config_file)
+
+ # read keys/ values from config file and return them
+ return config
+ except Exception as e:
+ raise e
+
+
+########## experimental completion variants ############################
+
+
+def process_system_message(system_message, max_tokens, model):
+ system_message_event = {"role": "system", "content": system_message}
+ system_message_tokens = get_token_count([system_message_event], model)
+
+ if system_message_tokens > max_tokens:
+ print_verbose(
+ "`tokentrimmer`: Warning, system message exceeds token limit. Trimming..."
+ )
+ # shorten system message to fit within max_tokens
+ new_system_message = shorten_message_to_fit_limit(
+ system_message_event, max_tokens, model
+ )
+ system_message_tokens = get_token_count([new_system_message], model)
+
+ return system_message_event, max_tokens - system_message_tokens
+
+
+def process_messages(messages, max_tokens, model):
+ # Process messages from older to more recent
+ messages = messages[::-1]
+ final_messages = []
+
+ for message in messages:
+ used_tokens = get_token_count(final_messages, model)
+ available_tokens = max_tokens - used_tokens
+ if available_tokens <= 3:
+ break
+ final_messages = attempt_message_addition(
+ final_messages=final_messages,
+ message=message,
+ available_tokens=available_tokens,
+ max_tokens=max_tokens,
+ model=model,
+ )
+
+ return final_messages
+
+
+def attempt_message_addition(
+ final_messages, message, available_tokens, max_tokens, model
+):
+ temp_messages = [message] + final_messages
+ temp_message_tokens = get_token_count(messages=temp_messages, model=model)
+
+ if temp_message_tokens <= max_tokens:
+ return temp_messages
+
+ # if temp_message_tokens > max_tokens, try shortening temp_messages
+ elif "function_call" not in message:
+ # fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
+ updated_message = shorten_message_to_fit_limit(message, available_tokens, model)
+ if can_add_message(updated_message, final_messages, max_tokens, model):
+ return [updated_message] + final_messages
+
+ return final_messages
+
+
+def can_add_message(message, messages, max_tokens, model):
+ if get_token_count(messages + [message], model) <= max_tokens:
+ return True
+ return False
+
+
+def get_token_count(messages, model):
+ return token_counter(model=model, messages=messages)
+
+
+def shorten_message_to_fit_limit(message, tokens_needed, model: Optional[str]):
+ """
+ Shorten a message to fit within a token limit by removing characters from the middle.
+ """
+
+ # For OpenAI models, even blank messages cost 7 token,
+ # and if the buffer is less than 3, the while loop will never end,
+ # hence the value 10.
+ if model is not None and "gpt" in model and tokens_needed <= 10:
+ return message
+
+ content = message["content"]
+
+ while True:
+ total_tokens = get_token_count([message], model)
+
+ if total_tokens <= tokens_needed:
+ break
+
+ ratio = (tokens_needed) / total_tokens
+
+ new_length = int(len(content) * ratio) - 1
+ new_length = max(0, new_length)
+
+ half_length = new_length // 2
+ left_half = content[:half_length]
+ right_half = content[-half_length:]
+
+ trimmed_content = left_half + ".." + right_half
+ message["content"] = trimmed_content
+ content = trimmed_content
+
+ return message
+
+
+# LiteLLM token trimmer
+# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
+# Credits for this code go to Killian Lucas
+def trim_messages(
+ messages,
+ model: Optional[str] = None,
+ trim_ratio: float = 0.75,
+ return_response_tokens: bool = False,
+ max_tokens=None,
+):
+ """
+ Trim a list of messages to fit within a model's token limit.
+
+ Args:
+ messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
+ model: The LiteLLM model being used (determines the token limit).
+ trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
+ return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
+ max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.
+
+ Returns:
+ Trimmed messages and optionally the number of tokens available for response.
+ """
+ # Initialize max_tokens
+ # if users pass in max tokens, trim to this amount
+ messages = copy.deepcopy(messages)
+ try:
+ if max_tokens is None:
+ # Check if model is valid
+ if model in litellm.model_cost:
+ max_tokens_for_model = litellm.model_cost[model].get(
+ "max_input_tokens", litellm.model_cost[model]["max_tokens"]
+ )
+ max_tokens = int(max_tokens_for_model * trim_ratio)
+ else:
+ # if user did not specify max (input) tokens
+ # or passed an llm litellm does not know
+ # do nothing, just return messages
+ return messages
+
+ system_message = ""
+ for message in messages:
+ if message["role"] == "system":
+ system_message += "\n" if system_message else ""
+ system_message += message["content"]
+
+ ## Handle Tool Call ## - check if last message is a tool response, return as is - https://github.com/BerriAI/litellm/issues/4931
+ tool_messages = []
+
+ for message in reversed(messages):
+ if message["role"] != "tool":
+ break
+ tool_messages.append(message)
+ # # Remove the collected tool messages from the original list
+ if len(tool_messages):
+ messages = messages[: -len(tool_messages)]
+
+ current_tokens = token_counter(model=model or "", messages=messages)
+ print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}")
+
+ # Do nothing if current tokens under messages
+ if current_tokens < max_tokens:
+ return messages
+
+ #### Trimming messages if current_tokens > max_tokens
+ print_verbose(
+ f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}"
+ )
+ system_message_event: Optional[dict] = None
+ if system_message:
+ system_message_event, max_tokens = process_system_message(
+ system_message=system_message, max_tokens=max_tokens, model=model
+ )
+
+ if max_tokens == 0: # the system messages are too long
+ return [system_message_event]
+
+ # Since all system messages are combined and trimmed to fit the max_tokens,
+ # we remove all system messages from the messages list
+ messages = [message for message in messages if message["role"] != "system"]
+
+ final_messages = process_messages(
+ messages=messages, max_tokens=max_tokens, model=model
+ )
+
+ # Add system message to the beginning of the final messages
+ if system_message_event:
+ final_messages = [system_message_event] + final_messages
+
+ if len(tool_messages) > 0:
+ final_messages.extend(tool_messages)
+
+ if (
+ return_response_tokens
+ ): # if user wants token count with new trimmed messages
+ response_tokens = max_tokens - get_token_count(final_messages, model)
+ return final_messages, response_tokens
+ return final_messages
+ except Exception as e: # [NON-Blocking, if error occurs just return final_messages
+ verbose_logger.exception(
+ "Got exception while token trimming - {}".format(str(e))
+ )
+ return messages
+
+
+def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
+ """
+ Returns a list of valid LLMs based on the set environment variables
+
+ Args:
+ check_provider_endpoint: If True, will check the provider's endpoint for valid models.
+
+ Returns:
+ A list of valid LLMs
+ """
+ try:
+ # get keys set in .env
+ environ_keys = os.environ.keys()
+ valid_providers = []
+ # for all valid providers, make a list of supported llms
+ valid_models = []
+
+ for provider in litellm.provider_list:
+ # edge case litellm has together_ai as a provider, it should be togetherai
+ env_provider_1 = provider.replace("_", "")
+ env_provider_2 = provider
+
+ # litellm standardizes expected provider keys to
+ # PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY
+ expected_provider_key_1 = f"{env_provider_1.upper()}_API_KEY"
+ expected_provider_key_2 = f"{env_provider_2.upper()}_API_KEY"
+ if (
+ expected_provider_key_1 in environ_keys
+ or expected_provider_key_2 in environ_keys
+ ):
+ # key is set
+ valid_providers.append(provider)
+
+ for provider in valid_providers:
+ provider_config = ProviderConfigManager.get_provider_model_info(
+ model=None,
+ provider=LlmProviders(provider),
+ )
+
+ if provider == "azure":
+ valid_models.append("Azure-LLM")
+ elif provider_config is not None and check_provider_endpoint:
+ valid_models.extend(provider_config.get_models())
+ else:
+ models_for_provider = litellm.models_by_provider.get(provider, [])
+ valid_models.extend(models_for_provider)
+ return valid_models
+ except Exception as e:
+ verbose_logger.debug(f"Error getting valid models: {e}")
+ return [] # NON-Blocking
+
+
+def print_args_passed_to_litellm(original_function, args, kwargs):
+ if not _is_debugging_on():
+ return
+ try:
+ # we've already printed this for acompletion, don't print for completion
+ if (
+ "acompletion" in kwargs
+ and kwargs["acompletion"] is True
+ and original_function.__name__ == "completion"
+ ):
+ return
+ elif (
+ "aembedding" in kwargs
+ and kwargs["aembedding"] is True
+ and original_function.__name__ == "embedding"
+ ):
+ return
+ elif (
+ "aimg_generation" in kwargs
+ and kwargs["aimg_generation"] is True
+ and original_function.__name__ == "img_generation"
+ ):
+ return
+
+ args_str = ", ".join(map(repr, args))
+ kwargs_str = ", ".join(f"{key}={repr(value)}" for key, value in kwargs.items())
+ print_verbose(
+ "\n",
+ ) # new line before
+ print_verbose(
+ "\033[92mRequest to litellm:\033[0m",
+ )
+ if args and kwargs:
+ print_verbose(
+ f"\033[92mlitellm.{original_function.__name__}({args_str}, {kwargs_str})\033[0m"
+ )
+ elif args:
+ print_verbose(
+ f"\033[92mlitellm.{original_function.__name__}({args_str})\033[0m"
+ )
+ elif kwargs:
+ print_verbose(
+ f"\033[92mlitellm.{original_function.__name__}({kwargs_str})\033[0m"
+ )
+ else:
+ print_verbose(f"\033[92mlitellm.{original_function.__name__}()\033[0m")
+ print_verbose("\n") # new line after
+ except Exception:
+ # This should always be non blocking
+ pass
+
+
+def get_logging_id(start_time, response_obj):
+ try:
+ response_id = (
+ "time-" + start_time.strftime("%H-%M-%S-%f") + "_" + response_obj.get("id")
+ )
+ return response_id
+ except Exception:
+ return None
+
+
+def _get_base_model_from_metadata(model_call_details=None):
+ if model_call_details is None:
+ return None
+ litellm_params = model_call_details.get("litellm_params", {})
+ if litellm_params is not None:
+ _base_model = litellm_params.get("base_model", None)
+ if _base_model is not None:
+ return _base_model
+ metadata = litellm_params.get("metadata", {})
+
+ return _get_base_model_from_litellm_call_metadata(metadata=metadata)
+ return None
+
+
+class ModelResponseIterator:
+ def __init__(self, model_response: ModelResponse, convert_to_delta: bool = False):
+ if convert_to_delta is True:
+ self.model_response = ModelResponse(stream=True)
+ _delta = self.model_response.choices[0].delta # type: ignore
+ _delta.content = model_response.choices[0].message.content # type: ignore
+ else:
+ self.model_response = model_response
+ self.is_done = False
+
+ # Sync iterator
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ if self.is_done:
+ raise StopIteration
+ self.is_done = True
+ return self.model_response
+
+ # Async iterator
+ def __aiter__(self):
+ return self
+
+ async def __anext__(self):
+ if self.is_done:
+ raise StopAsyncIteration
+ self.is_done = True
+ return self.model_response
+
+
+class ModelResponseListIterator:
+ def __init__(self, model_responses):
+ self.model_responses = model_responses
+ self.index = 0
+
+ # Sync iterator
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ if self.index >= len(self.model_responses):
+ raise StopIteration
+ model_response = self.model_responses[self.index]
+ self.index += 1
+ return model_response
+
+ # Async iterator
+ def __aiter__(self):
+ return self
+
+ async def __anext__(self):
+ if self.index >= len(self.model_responses):
+ raise StopAsyncIteration
+ model_response = self.model_responses[self.index]
+ self.index += 1
+ return model_response
+
+
+class CustomModelResponseIterator(Iterable):
+ def __init__(self) -> None:
+ super().__init__()
+
+
+def is_cached_message(message: AllMessageValues) -> bool:
+ """
+ Returns true, if message is marked as needing to be cached.
+
+ Used for anthropic/gemini context caching.
+
+ Follows the anthropic format {"cache_control": {"type": "ephemeral"}}
+ """
+ if "content" not in message:
+ return False
+ if message["content"] is None or isinstance(message["content"], str):
+ return False
+
+ for content in message["content"]:
+ if (
+ content["type"] == "text"
+ and content.get("cache_control") is not None
+ and content["cache_control"]["type"] == "ephemeral" # type: ignore
+ ):
+ return True
+
+ return False
+
+
+def is_base64_encoded(s: str) -> bool:
+ try:
+ # Strip out the prefix if it exists
+ if not s.startswith(
+ "data:"
+ ): # require `data:` for base64 str, like openai. Prevents false positives like s='Dog'
+ return False
+
+ s = s.split(",")[1]
+
+ # Try to decode the string
+ decoded_bytes = base64.b64decode(s, validate=True)
+
+ # Check if the original string can be re-encoded to the same string
+ return base64.b64encode(decoded_bytes).decode("utf-8") == s
+ except Exception:
+ return False
+
+
+def get_base64_str(s: str) -> str:
+ """
+ s: b64str OR 
+ """
+ if "," in s:
+ return s.split(",")[1]
+ return s
+
+
+def has_tool_call_blocks(messages: List[AllMessageValues]) -> bool:
+ """
+ Returns true, if messages has tool call blocks.
+
+ Used for anthropic/bedrock message validation.
+ """
+ for message in messages:
+ if message.get("tool_calls") is not None:
+ return True
+ return False
+
+
+def add_dummy_tool(custom_llm_provider: str) -> List[ChatCompletionToolParam]:
+ """
+ Prevent Anthropic from raising error when tool_use block exists but no tools are provided.
+
+ Relevent Issues: https://github.com/BerriAI/litellm/issues/5388, https://github.com/BerriAI/litellm/issues/5747
+ """
+ return [
+ ChatCompletionToolParam(
+ type="function",
+ function=ChatCompletionToolParamFunctionChunk(
+ name="dummy_tool",
+ description="This is a dummy tool call", # provided to satisfy bedrock constraint.
+ parameters={
+ "type": "object",
+ "properties": {},
+ },
+ ),
+ )
+ ]
+
+
+from litellm.types.llms.openai import (
+ ChatCompletionAudioObject,
+ ChatCompletionImageObject,
+ ChatCompletionTextObject,
+ ChatCompletionUserMessage,
+ OpenAIMessageContent,
+ ValidUserMessageContentTypes,
+)
+
+
+def convert_to_dict(message: Union[BaseModel, dict]) -> dict:
+ """
+ Converts a message to a dictionary if it's a Pydantic model.
+
+ Args:
+ message: The message, which may be a Pydantic model or a dictionary.
+
+ Returns:
+ dict: The converted message.
+ """
+ if isinstance(message, BaseModel):
+ return message.model_dump(exclude_none=True)
+ elif isinstance(message, dict):
+ return message
+ else:
+ raise TypeError(
+ f"Invalid message type: {type(message)}. Expected dict or Pydantic model."
+ )
+
+
+def validate_and_fix_openai_messages(messages: List):
+ """
+ Ensures all messages are valid OpenAI chat completion messages.
+
+ Handles missing role for assistant messages.
+ """
+ for message in messages:
+ if not message.get("role"):
+ message["role"] = "assistant"
+ return validate_chat_completion_messages(messages=messages)
+
+
+def validate_chat_completion_messages(messages: List[AllMessageValues]):
+ """
+ Ensures all messages are valid OpenAI chat completion messages.
+ """
+ # 1. convert all messages to dict
+ messages = [
+ cast(AllMessageValues, convert_to_dict(cast(dict, m))) for m in messages
+ ]
+ # 2. validate user messages
+ return validate_chat_completion_user_messages(messages=messages)
+
+
+def validate_chat_completion_user_messages(messages: List[AllMessageValues]):
+ """
+ Ensures all user messages are valid OpenAI chat completion messages.
+
+ Args:
+ messages: List of message dictionaries
+ message_content_type: Type to validate content against
+
+ Returns:
+ List[dict]: The validated messages
+
+ Raises:
+ ValueError: If any message is invalid
+ """
+ for idx, m in enumerate(messages):
+ try:
+ if m["role"] == "user":
+ user_content = m.get("content")
+ if user_content is not None:
+ if isinstance(user_content, str):
+ continue
+ elif isinstance(user_content, list):
+ for item in user_content:
+ if isinstance(item, dict):
+ if item.get("type") not in ValidUserMessageContentTypes:
+ raise Exception("invalid content type")
+ except Exception as e:
+ if isinstance(e, KeyError):
+ raise Exception(
+ f"Invalid message={m} at index {idx}. Please ensure all messages are valid OpenAI chat completion messages."
+ )
+ if "invalid content type" in str(e):
+ raise Exception(
+ f"Invalid user message={m} at index {idx}. Please ensure all user messages are valid OpenAI chat completion messages."
+ )
+ else:
+ raise e
+
+ return messages
+
+
+def validate_chat_completion_tool_choice(
+ tool_choice: Optional[Union[dict, str]]
+) -> Optional[Union[dict, str]]:
+ """
+ Confirm the tool choice is passed in the OpenAI format.
+
+ Prevents user errors like: https://github.com/BerriAI/litellm/issues/7483
+ """
+ from litellm.types.llms.openai import (
+ ChatCompletionToolChoiceObjectParam,
+ ChatCompletionToolChoiceStringValues,
+ )
+
+ if tool_choice is None:
+ return tool_choice
+ elif isinstance(tool_choice, str):
+ return tool_choice
+ elif isinstance(tool_choice, dict):
+ if tool_choice.get("type") is None or tool_choice.get("function") is None:
+ raise Exception(
+ f"Invalid tool choice, tool_choice={tool_choice}. Please ensure tool_choice follows the OpenAI spec"
+ )
+ return tool_choice
+ raise Exception(
+ f"Invalid tool choice, tool_choice={tool_choice}. Got={type(tool_choice)}. Expecting str, or dict. Please ensure tool_choice follows the OpenAI tool_choice spec"
+ )
+
+
+class ProviderConfigManager:
+ @staticmethod
+ def get_provider_chat_config( # noqa: PLR0915
+ model: str, provider: LlmProviders
+ ) -> BaseConfig:
+ """
+ Returns the provider config for a given provider.
+ """
+ if (
+ provider == LlmProviders.OPENAI
+ and litellm.openaiOSeriesConfig.is_model_o_series_model(model=model)
+ ):
+ return litellm.openaiOSeriesConfig
+ elif litellm.LlmProviders.DEEPSEEK == provider:
+ return litellm.DeepSeekChatConfig()
+ elif litellm.LlmProviders.GROQ == provider:
+ return litellm.GroqChatConfig()
+ elif litellm.LlmProviders.DATABRICKS == provider:
+ return litellm.DatabricksConfig()
+ elif litellm.LlmProviders.XAI == provider:
+ return litellm.XAIChatConfig()
+ elif litellm.LlmProviders.TEXT_COMPLETION_OPENAI == provider:
+ return litellm.OpenAITextCompletionConfig()
+ elif litellm.LlmProviders.COHERE_CHAT == provider:
+ return litellm.CohereChatConfig()
+ elif litellm.LlmProviders.COHERE == provider:
+ return litellm.CohereConfig()
+ elif litellm.LlmProviders.SNOWFLAKE == provider:
+ return litellm.SnowflakeConfig()
+ elif litellm.LlmProviders.CLARIFAI == provider:
+ return litellm.ClarifaiConfig()
+ elif litellm.LlmProviders.ANTHROPIC == provider:
+ return litellm.AnthropicConfig()
+ elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
+ return litellm.AnthropicTextConfig()
+ elif litellm.LlmProviders.VERTEX_AI == provider:
+ if "claude" in model:
+ return litellm.VertexAIAnthropicConfig()
+ elif litellm.LlmProviders.CLOUDFLARE == provider:
+ return litellm.CloudflareChatConfig()
+ elif litellm.LlmProviders.SAGEMAKER_CHAT == provider:
+ return litellm.SagemakerChatConfig()
+ elif litellm.LlmProviders.SAGEMAKER == provider:
+ return litellm.SagemakerConfig()
+ elif litellm.LlmProviders.FIREWORKS_AI == provider:
+ return litellm.FireworksAIConfig()
+ elif litellm.LlmProviders.FRIENDLIAI == provider:
+ return litellm.FriendliaiChatConfig()
+ elif litellm.LlmProviders.WATSONX == provider:
+ return litellm.IBMWatsonXChatConfig()
+ elif litellm.LlmProviders.WATSONX_TEXT == provider:
+ return litellm.IBMWatsonXAIConfig()
+ elif litellm.LlmProviders.EMPOWER == provider:
+ return litellm.EmpowerChatConfig()
+ elif litellm.LlmProviders.GITHUB == provider:
+ return litellm.GithubChatConfig()
+ elif (
+ litellm.LlmProviders.CUSTOM == provider
+ or litellm.LlmProviders.CUSTOM_OPENAI == provider
+ or litellm.LlmProviders.OPENAI_LIKE == provider
+ or litellm.LlmProviders.LITELLM_PROXY == provider
+ ):
+ return litellm.OpenAILikeChatConfig()
+ elif litellm.LlmProviders.AIOHTTP_OPENAI == provider:
+ return litellm.AiohttpOpenAIChatConfig()
+ elif litellm.LlmProviders.HOSTED_VLLM == provider:
+ return litellm.HostedVLLMChatConfig()
+ elif litellm.LlmProviders.LM_STUDIO == provider:
+ return litellm.LMStudioChatConfig()
+ elif litellm.LlmProviders.GALADRIEL == provider:
+ return litellm.GaladrielChatConfig()
+ elif litellm.LlmProviders.REPLICATE == provider:
+ return litellm.ReplicateConfig()
+ elif litellm.LlmProviders.HUGGINGFACE == provider:
+ return litellm.HuggingfaceConfig()
+ elif litellm.LlmProviders.TOGETHER_AI == provider:
+ return litellm.TogetherAIConfig()
+ elif litellm.LlmProviders.OPENROUTER == provider:
+ return litellm.OpenrouterConfig()
+ elif litellm.LlmProviders.GEMINI == provider:
+ return litellm.GoogleAIStudioGeminiConfig()
+ elif (
+ litellm.LlmProviders.AI21 == provider
+ or litellm.LlmProviders.AI21_CHAT == provider
+ ):
+ return litellm.AI21ChatConfig()
+ elif litellm.LlmProviders.AZURE == provider:
+ if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
+ return litellm.AzureOpenAIO1Config()
+ return litellm.AzureOpenAIConfig()
+ elif litellm.LlmProviders.AZURE_AI == provider:
+ return litellm.AzureAIStudioConfig()
+ elif litellm.LlmProviders.AZURE_TEXT == provider:
+ return litellm.AzureOpenAITextConfig()
+ elif litellm.LlmProviders.HOSTED_VLLM == provider:
+ return litellm.HostedVLLMChatConfig()
+ elif litellm.LlmProviders.NLP_CLOUD == provider:
+ return litellm.NLPCloudConfig()
+ elif litellm.LlmProviders.OOBABOOGA == provider:
+ return litellm.OobaboogaConfig()
+ elif litellm.LlmProviders.OLLAMA_CHAT == provider:
+ return litellm.OllamaChatConfig()
+ elif litellm.LlmProviders.DEEPINFRA == provider:
+ return litellm.DeepInfraConfig()
+ elif litellm.LlmProviders.PERPLEXITY == provider:
+ return litellm.PerplexityChatConfig()
+ elif (
+ litellm.LlmProviders.MISTRAL == provider
+ or litellm.LlmProviders.CODESTRAL == provider
+ ):
+ return litellm.MistralConfig()
+ elif litellm.LlmProviders.NVIDIA_NIM == provider:
+ return litellm.NvidiaNimConfig()
+ elif litellm.LlmProviders.CEREBRAS == provider:
+ return litellm.CerebrasConfig()
+ elif litellm.LlmProviders.VOLCENGINE == provider:
+ return litellm.VolcEngineConfig()
+ elif litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL == provider:
+ return litellm.CodestralTextCompletionConfig()
+ elif litellm.LlmProviders.SAMBANOVA == provider:
+ return litellm.SambanovaConfig()
+ elif litellm.LlmProviders.MARITALK == provider:
+ return litellm.MaritalkConfig()
+ elif litellm.LlmProviders.CLOUDFLARE == provider:
+ return litellm.CloudflareChatConfig()
+ elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
+ return litellm.AnthropicTextConfig()
+ elif litellm.LlmProviders.VLLM == provider:
+ return litellm.VLLMConfig()
+ elif litellm.LlmProviders.OLLAMA == provider:
+ return litellm.OllamaConfig()
+ elif litellm.LlmProviders.PREDIBASE == provider:
+ return litellm.PredibaseConfig()
+ elif litellm.LlmProviders.TRITON == provider:
+ return litellm.TritonConfig()
+ elif litellm.LlmProviders.PETALS == provider:
+ return litellm.PetalsConfig()
+ elif litellm.LlmProviders.BEDROCK == provider:
+ bedrock_route = BedrockModelInfo.get_bedrock_route(model)
+ bedrock_invoke_provider = litellm.BedrockLLM.get_bedrock_invoke_provider(
+ model=model
+ )
+ base_model = BedrockModelInfo.get_base_model(model)
+
+ if bedrock_route == "converse" or bedrock_route == "converse_like":
+ return litellm.AmazonConverseConfig()
+ elif bedrock_invoke_provider == "amazon": # amazon titan llms
+ return litellm.AmazonTitanConfig()
+ elif bedrock_invoke_provider == "anthropic":
+ if base_model.startswith("anthropic.claude-3"):
+ return litellm.AmazonAnthropicClaude3Config()
+ else:
+ return litellm.AmazonAnthropicConfig()
+ elif (
+ bedrock_invoke_provider == "meta" or bedrock_invoke_provider == "llama"
+ ): # amazon / meta llms
+ return litellm.AmazonLlamaConfig()
+ elif bedrock_invoke_provider == "ai21": # ai21 llms
+ return litellm.AmazonAI21Config()
+ elif bedrock_invoke_provider == "cohere": # cohere models on bedrock
+ return litellm.AmazonCohereConfig()
+ elif bedrock_invoke_provider == "mistral": # mistral models on bedrock
+ return litellm.AmazonMistralConfig()
+ elif bedrock_invoke_provider == "deepseek_r1": # deepseek models on bedrock
+ return litellm.AmazonDeepSeekR1Config()
+ else:
+ return litellm.AmazonInvokeConfig()
+ return litellm.OpenAIGPTConfig()
+
+ @staticmethod
+ def get_provider_embedding_config(
+ model: str,
+ provider: LlmProviders,
+ ) -> BaseEmbeddingConfig:
+ if litellm.LlmProviders.VOYAGE == provider:
+ return litellm.VoyageEmbeddingConfig()
+ elif litellm.LlmProviders.TRITON == provider:
+ return litellm.TritonEmbeddingConfig()
+ elif litellm.LlmProviders.WATSONX == provider:
+ return litellm.IBMWatsonXEmbeddingConfig()
+ raise ValueError(f"Provider {provider.value} does not support embedding config")
+
+ @staticmethod
+ def get_provider_rerank_config(
+ model: str,
+ provider: LlmProviders,
+ api_base: Optional[str],
+ present_version_params: List[str],
+ ) -> BaseRerankConfig:
+ if litellm.LlmProviders.COHERE == provider:
+ if should_use_cohere_v1_client(api_base, present_version_params):
+ return litellm.CohereRerankConfig()
+ else:
+ return litellm.CohereRerankV2Config()
+ elif litellm.LlmProviders.AZURE_AI == provider:
+ return litellm.AzureAIRerankConfig()
+ elif litellm.LlmProviders.INFINITY == provider:
+ return litellm.InfinityRerankConfig()
+ elif litellm.LlmProviders.JINA_AI == provider:
+ return litellm.JinaAIRerankConfig()
+ return litellm.CohereRerankConfig()
+
+ @staticmethod
+ def get_provider_anthropic_messages_config(
+ model: str,
+ provider: LlmProviders,
+ ) -> Optional[BaseAnthropicMessagesConfig]:
+ if litellm.LlmProviders.ANTHROPIC == provider:
+ return litellm.AnthropicMessagesConfig()
+ return None
+
+ @staticmethod
+ def get_provider_audio_transcription_config(
+ model: str,
+ provider: LlmProviders,
+ ) -> Optional[BaseAudioTranscriptionConfig]:
+ if litellm.LlmProviders.FIREWORKS_AI == provider:
+ return litellm.FireworksAIAudioTranscriptionConfig()
+ elif litellm.LlmProviders.DEEPGRAM == provider:
+ return litellm.DeepgramAudioTranscriptionConfig()
+ return None
+
+ @staticmethod
+ def get_provider_responses_api_config(
+ model: str,
+ provider: LlmProviders,
+ ) -> Optional[BaseResponsesAPIConfig]:
+ if litellm.LlmProviders.OPENAI == provider:
+ return litellm.OpenAIResponsesAPIConfig()
+ return None
+
+ @staticmethod
+ def get_provider_text_completion_config(
+ model: str,
+ provider: LlmProviders,
+ ) -> BaseTextCompletionConfig:
+ if LlmProviders.FIREWORKS_AI == provider:
+ return litellm.FireworksAITextCompletionConfig()
+ elif LlmProviders.TOGETHER_AI == provider:
+ return litellm.TogetherAITextCompletionConfig()
+ return litellm.OpenAITextCompletionConfig()
+
+ @staticmethod
+ def get_provider_model_info(
+ model: Optional[str],
+ provider: LlmProviders,
+ ) -> Optional[BaseLLMModelInfo]:
+ if LlmProviders.FIREWORKS_AI == provider:
+ return litellm.FireworksAIConfig()
+ elif LlmProviders.OPENAI == provider:
+ return litellm.OpenAIGPTConfig()
+ elif LlmProviders.LITELLM_PROXY == provider:
+ return litellm.LiteLLMProxyChatConfig()
+ elif LlmProviders.TOPAZ == provider:
+ return litellm.TopazModelInfo()
+
+ return None
+
+ @staticmethod
+ def get_provider_image_variation_config(
+ model: str,
+ provider: LlmProviders,
+ ) -> Optional[BaseImageVariationConfig]:
+ if LlmProviders.OPENAI == provider:
+ return litellm.OpenAIImageVariationConfig()
+ elif LlmProviders.TOPAZ == provider:
+ return litellm.TopazImageVariationConfig()
+ return None
+
+
+def get_end_user_id_for_cost_tracking(
+ litellm_params: dict,
+ service_type: Literal["litellm_logging", "prometheus"] = "litellm_logging",
+) -> Optional[str]:
+ """
+ Used for enforcing `disable_end_user_cost_tracking` param.
+
+ service_type: "litellm_logging" or "prometheus" - used to allow prometheus only disable cost tracking.
+ """
+ _metadata = cast(dict, litellm_params.get("metadata", {}) or {})
+
+ end_user_id = cast(
+ Optional[str],
+ litellm_params.get("user_api_key_end_user_id")
+ or _metadata.get("user_api_key_end_user_id"),
+ )
+ if litellm.disable_end_user_cost_tracking:
+ return None
+ if (
+ service_type == "prometheus"
+ and litellm.disable_end_user_cost_tracking_prometheus_only
+ ):
+ return None
+ return end_user_id
+
+
+def should_use_cohere_v1_client(
+ api_base: Optional[str], present_version_params: List[str]
+):
+ if not api_base:
+ return False
+ uses_v1_params = ("max_chunks_per_doc" in present_version_params) and (
+ "max_tokens_per_doc" not in present_version_params
+ )
+ return api_base.endswith("/v1/rerank") or (
+ uses_v1_params and not api_base.endswith("/v2/rerank")
+ )
+
+
+def is_prompt_caching_valid_prompt(
+ model: str,
+ messages: Optional[List[AllMessageValues]],
+ tools: Optional[List[ChatCompletionToolParam]] = None,
+ custom_llm_provider: Optional[str] = None,
+) -> bool:
+ """
+ Returns true if the prompt is valid for prompt caching.
+
+ OpenAI + Anthropic providers have a minimum token count of 1024 for prompt caching.
+ """
+ try:
+ if messages is None and tools is None:
+ return False
+ if custom_llm_provider is not None and not model.startswith(
+ custom_llm_provider
+ ):
+ model = custom_llm_provider + "/" + model
+ token_count = token_counter(
+ messages=messages,
+ tools=tools,
+ model=model,
+ use_default_image_token_count=True,
+ )
+ return token_count >= 1024
+ except Exception as e:
+ verbose_logger.error(f"Error in is_prompt_caching_valid_prompt: {e}")
+ return False
+
+
+def extract_duration_from_srt_or_vtt(srt_or_vtt_content: str) -> Optional[float]:
+ """
+ Extracts the total duration (in seconds) from SRT or VTT content.
+
+ Args:
+ srt_or_vtt_content (str): The content of an SRT or VTT file as a string.
+
+ Returns:
+ Optional[float]: The total duration in seconds, or None if no timestamps are found.
+ """
+ # Regular expression to match timestamps in the format "hh:mm:ss,ms" or "hh:mm:ss.ms"
+ timestamp_pattern = r"(\d{2}):(\d{2}):(\d{2})[.,](\d{3})"
+
+ timestamps = re.findall(timestamp_pattern, srt_or_vtt_content)
+
+ if not timestamps:
+ return None
+
+ # Convert timestamps to seconds and find the max (end time)
+ durations = []
+ for match in timestamps:
+ hours, minutes, seconds, milliseconds = map(int, match)
+ total_seconds = hours * 3600 + minutes * 60 + seconds + milliseconds / 1000.0
+ durations.append(total_seconds)
+
+ return max(durations) if durations else None
+
+
+import httpx
+
+
+def _add_path_to_api_base(api_base: str, ending_path: str) -> str:
+ """
+ Adds an ending path to an API base URL while preventing duplicate path segments.
+
+ Args:
+ api_base: Base URL string
+ ending_path: Path to append to the base URL
+
+ Returns:
+ Modified URL string with proper path handling
+ """
+ original_url = httpx.URL(api_base)
+ base_url = original_url.copy_with(params={}) # Removes query params
+ base_path = original_url.path.rstrip("/")
+ end_path = ending_path.lstrip("/")
+
+ # Split paths into segments
+ base_segments = [s for s in base_path.split("/") if s]
+ end_segments = [s for s in end_path.split("/") if s]
+
+ # Find overlapping segments from the end of base_path and start of ending_path
+ final_segments = []
+ for i in range(len(base_segments)):
+ if base_segments[i:] == end_segments[: len(base_segments) - i]:
+ final_segments = base_segments[:i] + end_segments
+ break
+ else:
+ # No overlap found, just combine all segments
+ final_segments = base_segments + end_segments
+
+ # Construct the new path
+ modified_path = "/" + "/".join(final_segments)
+ modified_url = base_url.copy_with(path=modified_path)
+
+ # Re-add the original query parameters
+ return str(modified_url.copy_with(params=original_url.params))
+
+
+def get_non_default_completion_params(kwargs: dict) -> dict:
+ openai_params = litellm.OPENAI_CHAT_COMPLETION_PARAMS
+ default_params = openai_params + all_litellm_params
+ non_default_params = {
+ k: v for k, v in kwargs.items() if k not in default_params
+ } # model-specific params - pass them straight to the model/provider
+ return non_default_params
+
+
+def add_openai_metadata(metadata: dict) -> dict:
+ """
+ Add metadata to openai optional parameters, excluding hidden params.
+
+ OpenAI 'metadata' only supports string values.
+
+ Args:
+ params (dict): Dictionary of API parameters
+ metadata (dict, optional): Metadata to include in the request
+
+ Returns:
+ dict: Updated parameters dictionary with visible metadata only
+ """
+ if metadata is None:
+ return None
+ # Only include non-hidden parameters
+ visible_metadata = {
+ k: v
+ for k, v in metadata.items()
+ if k != "hidden_params" and isinstance(v, (str))
+ }
+
+ return visible_metadata.copy()
+
+
+def return_raw_request(endpoint: CallTypes, kwargs: dict) -> RawRequestTypedDict:
+ """
+ Return the json str of the request
+
+ This is currently in BETA, and tested for `/chat/completions` -> `litellm.completion` calls.
+ """
+ from datetime import datetime
+
+ from litellm.litellm_core_utils.litellm_logging import Logging
+
+ litellm_logging_obj = Logging(
+ model="gpt-3.5-turbo",
+ messages=[{"role": "user", "content": "hi"}],
+ stream=False,
+ call_type="acompletion",
+ litellm_call_id="1234",
+ start_time=datetime.now(),
+ function_id="1234",
+ log_raw_request_response=True,
+ )
+
+ llm_api_endpoint = getattr(litellm, endpoint.value)
+
+ received_exception = ""
+
+ try:
+ llm_api_endpoint(
+ **kwargs,
+ litellm_logging_obj=litellm_logging_obj,
+ api_key="my-fake-api-key", # 👈 ensure the request fails
+ )
+ except Exception as e:
+ received_exception = str(e)
+
+ raw_request_typed_dict = litellm_logging_obj.model_call_details.get(
+ "raw_request_typed_dict"
+ )
+ if raw_request_typed_dict:
+ return cast(RawRequestTypedDict, raw_request_typed_dict)
+ else:
+ return RawRequestTypedDict(
+ error=received_exception,
+ )