about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints/endpoints.py488
1 files changed, 488 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints/endpoints.py b/.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints/endpoints.py
new file mode 100644
index 00000000..6b7651d4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/proxy/batches_endpoints/endpoints.py
@@ -0,0 +1,488 @@
+######################################################################
+
+#                          /v1/batches Endpoints
+
+
+######################################################################
+import asyncio
+from typing import Dict, Optional, cast
+
+from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response
+
+import litellm
+from litellm._logging import verbose_proxy_logger
+from litellm.batches.main import (
+    CancelBatchRequest,
+    CreateBatchRequest,
+    RetrieveBatchRequest,
+)
+from litellm.proxy._types import *
+from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
+from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
+from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
+from litellm.proxy.common_utils.openai_endpoint_utils import (
+    get_custom_llm_provider_from_request_body,
+)
+from litellm.proxy.openai_files_endpoints.files_endpoints import is_known_model
+from litellm.proxy.utils import handle_exception_on_proxy
+
+router = APIRouter()
+
+
+@router.post(
+    "/{provider}/v1/batches",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.post(
+    "/v1/batches",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.post(
+    "/batches",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+async def create_batch(
+    request: Request,
+    fastapi_response: Response,
+    provider: Optional[str] = None,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Create large batches of API requests for asynchronous processing.
+    This is the equivalent of POST https://api.openai.com/v1/batch
+    Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch
+
+    Example Curl
+    ```
+    curl http://localhost:4000/v1/batches \
+        -H "Authorization: Bearer sk-1234" \
+        -H "Content-Type: application/json" \
+        -d '{
+            "input_file_id": "file-abc123",
+            "endpoint": "/v1/chat/completions",
+            "completion_window": "24h"
+    }'
+    ```
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        llm_router,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data: Dict = {}
+    try:
+        data = await _read_request_body(request=request)
+        verbose_proxy_logger.debug(
+            "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
+        )
+
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        ## check if model is a loadbalanced model
+        router_model: Optional[str] = None
+        is_router_model = False
+        if litellm.enable_loadbalancing_on_batch_endpoints is True:
+            router_model = data.get("model", None)
+            is_router_model = is_known_model(model=router_model, llm_router=llm_router)
+
+        custom_llm_provider = (
+            provider or data.pop("custom_llm_provider", None) or "openai"
+        )
+        _create_batch_data = CreateBatchRequest(**data)
+        if (
+            litellm.enable_loadbalancing_on_batch_endpoints is True
+            and is_router_model
+            and router_model is not None
+        ):
+            if llm_router is None:
+                raise HTTPException(
+                    status_code=500,
+                    detail={
+                        "error": "LLM Router not initialized. Ensure models added to proxy."
+                    },
+                )
+
+            response = await llm_router.acreate_batch(**_create_batch_data)  # type: ignore
+        else:
+            response = await litellm.acreate_batch(
+                custom_llm_provider=custom_llm_provider, **_create_batch_data  # type: ignore
+            )
+
+        ### ALERTING ###
+        asyncio.create_task(
+            proxy_logging_obj.update_request_status(
+                litellm_call_id=data.get("litellm_call_id", ""), status="success"
+            )
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+                request_data=data,
+            )
+        )
+
+        return response
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.exception(
+            "litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
+                str(e)
+            )
+        )
+        raise handle_exception_on_proxy(e)
+
+
+@router.get(
+    "/{provider}/v1/batches/{batch_id:path}",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.get(
+    "/v1/batches/{batch_id:path}",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.get(
+    "/batches/{batch_id:path}",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+async def retrieve_batch(
+    request: Request,
+    fastapi_response: Response,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+    provider: Optional[str] = None,
+    batch_id: str = Path(
+        title="Batch ID to retrieve", description="The ID of the batch to retrieve"
+    ),
+):
+    """
+    Retrieves a batch.
+    This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id}
+    Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve
+
+    Example Curl
+    ```
+    curl http://localhost:4000/v1/batches/batch_abc123 \
+    -H "Authorization: Bearer sk-1234" \
+    -H "Content-Type: application/json" \
+
+    ```
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        llm_router,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data: Dict = {}
+    try:
+        ## check if model is a loadbalanced model
+        _retrieve_batch_request = RetrieveBatchRequest(
+            batch_id=batch_id,
+        )
+
+        data = cast(dict, _retrieve_batch_request)
+
+        # setup logging
+        data["litellm_call_id"] = request.headers.get(
+            "x-litellm-call-id", str(uuid.uuid4())
+        )
+
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        if litellm.enable_loadbalancing_on_batch_endpoints is True:
+            if llm_router is None:
+                raise HTTPException(
+                    status_code=500,
+                    detail={
+                        "error": "LLM Router not initialized. Ensure models added to proxy."
+                    },
+                )
+
+            response = await llm_router.aretrieve_batch(**data)  # type: ignore
+        else:
+            custom_llm_provider = (
+                provider
+                or await get_custom_llm_provider_from_request_body(request=request)
+                or "openai"
+            )
+            response = await litellm.aretrieve_batch(
+                custom_llm_provider=custom_llm_provider, **data  # type: ignore
+            )
+
+        ### ALERTING ###
+        asyncio.create_task(
+            proxy_logging_obj.update_request_status(
+                litellm_call_id=data.get("litellm_call_id", ""), status="success"
+            )
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+                request_data=data,
+            )
+        )
+
+        return response
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.exception(
+            "litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
+                str(e)
+            )
+        )
+        raise handle_exception_on_proxy(e)
+
+
+@router.get(
+    "/{provider}/v1/batches",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.get(
+    "/v1/batches",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.get(
+    "/batches",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+async def list_batches(
+    request: Request,
+    fastapi_response: Response,
+    provider: Optional[str] = None,
+    limit: Optional[int] = None,
+    after: Optional[str] = None,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Lists 
+    This is the equivalent of GET https://api.openai.com/v1/batches/
+    Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list
+
+    Example Curl
+    ```
+    curl http://localhost:4000/v1/batches?limit=2 \
+    -H "Authorization: Bearer sk-1234" \
+    -H "Content-Type: application/json" \
+
+    ```
+    """
+    from litellm.proxy.proxy_server import proxy_logging_obj, version
+
+    verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit))
+    try:
+        custom_llm_provider = (
+            provider
+            or await get_custom_llm_provider_from_request_body(request=request)
+            or "openai"
+        )
+        response = await litellm.alist_batches(
+            custom_llm_provider=custom_llm_provider,  # type: ignore
+            after=after,
+            limit=limit,
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+            )
+        )
+
+        return response
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict,
+            original_exception=e,
+            request_data={"after": after, "limit": limit},
+        )
+        verbose_proxy_logger.error(
+            "litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
+                str(e)
+            )
+        )
+        raise handle_exception_on_proxy(e)
+
+
+@router.post(
+    "/{provider}/v1/batches/{batch_id:path}/cancel",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.post(
+    "/v1/batches/{batch_id:path}/cancel",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+@router.post(
+    "/batches/{batch_id:path}/cancel",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["batch"],
+)
+async def cancel_batch(
+    request: Request,
+    batch_id: str,
+    fastapi_response: Response,
+    provider: Optional[str] = None,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Cancel a batch.
+    This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
+
+    Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel
+
+    Example Curl
+    ```
+    curl http://localhost:4000/v1/batches/batch_abc123/cancel \
+        -H "Authorization: Bearer sk-1234" \
+        -H "Content-Type: application/json" \
+        -X POST
+
+    ```
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data: Dict = {}
+    try:
+        data = await _read_request_body(request=request)
+        verbose_proxy_logger.debug(
+            "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
+        )
+
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        custom_llm_provider = (
+            provider or data.pop("custom_llm_provider", None) or "openai"
+        )
+        _cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data)
+        response = await litellm.acancel_batch(
+            custom_llm_provider=custom_llm_provider,  # type: ignore
+            **_cancel_batch_data
+        )
+
+        ### ALERTING ###
+        asyncio.create_task(
+            proxy_logging_obj.update_request_status(
+                litellm_call_id=data.get("litellm_call_id", ""), status="success"
+            )
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+                request_data=data,
+            )
+        )
+
+        return response
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.exception(
+            "litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
+                str(e)
+            )
+        )
+        raise handle_exception_on_proxy(e)
+
+
+######################################################################
+
+#            END OF  /v1/batches Endpoints Implementation
+
+######################################################################