aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/Readme.md6
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/handler.py218
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/transformation.py193
3 files changed, 417 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/Readme.md b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/Readme.md
new file mode 100644
index 00000000..2aa7d7b0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/Readme.md
@@ -0,0 +1,6 @@
+# Vertex AI Batch Prediction Jobs
+
+Implementation to call VertexAI Batch endpoints in OpenAI Batch API spec
+
+Vertex Docs: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/batch-prediction-gemini
+
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/handler.py
new file mode 100644
index 00000000..b82268be
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/handler.py
@@ -0,0 +1,218 @@
+import json
+from typing import Any, Coroutine, Dict, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.llms.custom_httpx.http_handler import (
+ _get_httpx_client,
+ get_async_httpx_client,
+)
+from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM
+from litellm.types.llms.openai import CreateBatchRequest
+from litellm.types.llms.vertex_ai import (
+ VERTEX_CREDENTIALS_TYPES,
+ VertexAIBatchPredictionJob,
+)
+from litellm.types.utils import LiteLLMBatch
+
+from .transformation import VertexAIBatchTransformation
+
+
+class VertexAIBatchPrediction(VertexLLM):
+ def __init__(self, gcs_bucket_name: str, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.gcs_bucket_name = gcs_bucket_name
+
+ def create_batch(
+ self,
+ _is_async: bool,
+ create_batch_data: CreateBatchRequest,
+ api_base: Optional[str],
+ vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
+ vertex_project: Optional[str],
+ vertex_location: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ ) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]:
+
+ sync_handler = _get_httpx_client()
+
+ access_token, project_id = self._ensure_access_token(
+ credentials=vertex_credentials,
+ project_id=vertex_project,
+ custom_llm_provider="vertex_ai",
+ )
+
+ default_api_base = self.create_vertex_url(
+ vertex_location=vertex_location or "us-central1",
+ vertex_project=vertex_project or project_id,
+ )
+
+ if len(default_api_base.split(":")) > 1:
+ endpoint = default_api_base.split(":")[-1]
+ else:
+ endpoint = ""
+
+ _, api_base = self._check_custom_proxy(
+ api_base=api_base,
+ custom_llm_provider="vertex_ai",
+ gemini_api_key=None,
+ endpoint=endpoint,
+ stream=None,
+ auth_header=None,
+ url=default_api_base,
+ )
+
+ headers = {
+ "Content-Type": "application/json; charset=utf-8",
+ "Authorization": f"Bearer {access_token}",
+ }
+
+ vertex_batch_request: VertexAIBatchPredictionJob = (
+ VertexAIBatchTransformation.transform_openai_batch_request_to_vertex_ai_batch_request(
+ request=create_batch_data
+ )
+ )
+
+ if _is_async is True:
+ return self._async_create_batch(
+ vertex_batch_request=vertex_batch_request,
+ api_base=api_base,
+ headers=headers,
+ )
+
+ response = sync_handler.post(
+ url=api_base,
+ headers=headers,
+ data=json.dumps(vertex_batch_request),
+ )
+
+ if response.status_code != 200:
+ raise Exception(f"Error: {response.status_code} {response.text}")
+
+ _json_response = response.json()
+ vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
+ response=_json_response
+ )
+ return vertex_batch_response
+
+ async def _async_create_batch(
+ self,
+ vertex_batch_request: VertexAIBatchPredictionJob,
+ api_base: str,
+ headers: Dict[str, str],
+ ) -> LiteLLMBatch:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ )
+ response = await client.post(
+ url=api_base,
+ headers=headers,
+ data=json.dumps(vertex_batch_request),
+ )
+ if response.status_code != 200:
+ raise Exception(f"Error: {response.status_code} {response.text}")
+
+ _json_response = response.json()
+ vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
+ response=_json_response
+ )
+ return vertex_batch_response
+
+ def create_vertex_url(
+ self,
+ vertex_location: str,
+ vertex_project: str,
+ ) -> str:
+ """Return the base url for the vertex garden models"""
+ # POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs
+ return f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/batchPredictionJobs"
+
+ def retrieve_batch(
+ self,
+ _is_async: bool,
+ batch_id: str,
+ api_base: Optional[str],
+ vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
+ vertex_project: Optional[str],
+ vertex_location: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ ) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]:
+ sync_handler = _get_httpx_client()
+
+ access_token, project_id = self._ensure_access_token(
+ credentials=vertex_credentials,
+ project_id=vertex_project,
+ custom_llm_provider="vertex_ai",
+ )
+
+ default_api_base = self.create_vertex_url(
+ vertex_location=vertex_location or "us-central1",
+ vertex_project=vertex_project or project_id,
+ )
+
+ # Append batch_id to the URL
+ default_api_base = f"{default_api_base}/{batch_id}"
+
+ if len(default_api_base.split(":")) > 1:
+ endpoint = default_api_base.split(":")[-1]
+ else:
+ endpoint = ""
+
+ _, api_base = self._check_custom_proxy(
+ api_base=api_base,
+ custom_llm_provider="vertex_ai",
+ gemini_api_key=None,
+ endpoint=endpoint,
+ stream=None,
+ auth_header=None,
+ url=default_api_base,
+ )
+
+ headers = {
+ "Content-Type": "application/json; charset=utf-8",
+ "Authorization": f"Bearer {access_token}",
+ }
+
+ if _is_async is True:
+ return self._async_retrieve_batch(
+ api_base=api_base,
+ headers=headers,
+ )
+
+ response = sync_handler.get(
+ url=api_base,
+ headers=headers,
+ )
+
+ if response.status_code != 200:
+ raise Exception(f"Error: {response.status_code} {response.text}")
+
+ _json_response = response.json()
+ vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
+ response=_json_response
+ )
+ return vertex_batch_response
+
+ async def _async_retrieve_batch(
+ self,
+ api_base: str,
+ headers: Dict[str, str],
+ ) -> LiteLLMBatch:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.VERTEX_AI,
+ )
+ response = await client.get(
+ url=api_base,
+ headers=headers,
+ )
+ if response.status_code != 200:
+ raise Exception(f"Error: {response.status_code} {response.text}")
+
+ _json_response = response.json()
+ vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
+ response=_json_response
+ )
+ return vertex_batch_response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/transformation.py
new file mode 100644
index 00000000..a97f312d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/vertex_ai/batches/transformation.py
@@ -0,0 +1,193 @@
+import uuid
+from typing import Dict
+
+from litellm.llms.vertex_ai.common_utils import (
+ _convert_vertex_datetime_to_openai_datetime,
+)
+from litellm.types.llms.openai import BatchJobStatus, CreateBatchRequest
+from litellm.types.llms.vertex_ai import *
+from litellm.types.utils import LiteLLMBatch
+
+
+class VertexAIBatchTransformation:
+ """
+ Transforms OpenAI Batch requests to Vertex AI Batch requests
+
+ API Ref: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/batch-prediction-gemini
+ """
+
+ @classmethod
+ def transform_openai_batch_request_to_vertex_ai_batch_request(
+ cls,
+ request: CreateBatchRequest,
+ ) -> VertexAIBatchPredictionJob:
+ """
+ Transforms OpenAI Batch requests to Vertex AI Batch requests
+ """
+ request_display_name = f"litellm-vertex-batch-{uuid.uuid4()}"
+ input_file_id = request.get("input_file_id")
+ if input_file_id is None:
+ raise ValueError("input_file_id is required, but not provided")
+ input_config: InputConfig = InputConfig(
+ gcsSource=GcsSource(uris=input_file_id), instancesFormat="jsonl"
+ )
+ model: str = cls._get_model_from_gcs_file(input_file_id)
+ output_config: OutputConfig = OutputConfig(
+ predictionsFormat="jsonl",
+ gcsDestination=GcsDestination(
+ outputUriPrefix=cls._get_gcs_uri_prefix_from_file(input_file_id)
+ ),
+ )
+ return VertexAIBatchPredictionJob(
+ inputConfig=input_config,
+ outputConfig=output_config,
+ model=model,
+ displayName=request_display_name,
+ )
+
+ @classmethod
+ def transform_vertex_ai_batch_response_to_openai_batch_response(
+ cls, response: VertexBatchPredictionResponse
+ ) -> LiteLLMBatch:
+ return LiteLLMBatch(
+ id=cls._get_batch_id_from_vertex_ai_batch_response(response),
+ completion_window="24hrs",
+ created_at=_convert_vertex_datetime_to_openai_datetime(
+ vertex_datetime=response.get("createTime", "")
+ ),
+ endpoint="",
+ input_file_id=cls._get_input_file_id_from_vertex_ai_batch_response(
+ response
+ ),
+ object="batch",
+ status=cls._get_batch_job_status_from_vertex_ai_batch_response(response),
+ error_file_id=None, # Vertex AI doesn't seem to have a direct equivalent
+ output_file_id=cls._get_output_file_id_from_vertex_ai_batch_response(
+ response
+ ),
+ )
+
+ @classmethod
+ def _get_batch_id_from_vertex_ai_batch_response(
+ cls, response: VertexBatchPredictionResponse
+ ) -> str:
+ """
+ Gets the batch id from the Vertex AI Batch response safely
+
+ vertex response: `projects/510528649030/locations/us-central1/batchPredictionJobs/3814889423749775360`
+ returns: `3814889423749775360`
+ """
+ _name = response.get("name", "")
+ if not _name:
+ return ""
+
+ # Split by '/' and get the last part if it exists
+ parts = _name.split("/")
+ return parts[-1] if parts else _name
+
+ @classmethod
+ def _get_input_file_id_from_vertex_ai_batch_response(
+ cls, response: VertexBatchPredictionResponse
+ ) -> str:
+ """
+ Gets the input file id from the Vertex AI Batch response
+ """
+ input_file_id: str = ""
+ input_config = response.get("inputConfig")
+ if input_config is None:
+ return input_file_id
+
+ gcs_source = input_config.get("gcsSource")
+ if gcs_source is None:
+ return input_file_id
+
+ uris = gcs_source.get("uris", "")
+ if len(uris) == 0:
+ return input_file_id
+
+ return uris[0]
+
+ @classmethod
+ def _get_output_file_id_from_vertex_ai_batch_response(
+ cls, response: VertexBatchPredictionResponse
+ ) -> str:
+ """
+ Gets the output file id from the Vertex AI Batch response
+ """
+ output_file_id: str = ""
+ output_config = response.get("outputConfig")
+ if output_config is None:
+ return output_file_id
+
+ gcs_destination = output_config.get("gcsDestination")
+ if gcs_destination is None:
+ return output_file_id
+
+ output_uri_prefix = gcs_destination.get("outputUriPrefix", "")
+ return output_uri_prefix
+
+ @classmethod
+ def _get_batch_job_status_from_vertex_ai_batch_response(
+ cls, response: VertexBatchPredictionResponse
+ ) -> BatchJobStatus:
+ """
+ Gets the batch job status from the Vertex AI Batch response
+
+ ref: https://cloud.google.com/vertex-ai/docs/reference/rest/v1/JobState
+ """
+ state_mapping: Dict[str, BatchJobStatus] = {
+ "JOB_STATE_UNSPECIFIED": "failed",
+ "JOB_STATE_QUEUED": "validating",
+ "JOB_STATE_PENDING": "validating",
+ "JOB_STATE_RUNNING": "in_progress",
+ "JOB_STATE_SUCCEEDED": "completed",
+ "JOB_STATE_FAILED": "failed",
+ "JOB_STATE_CANCELLING": "cancelling",
+ "JOB_STATE_CANCELLED": "cancelled",
+ "JOB_STATE_PAUSED": "in_progress",
+ "JOB_STATE_EXPIRED": "expired",
+ "JOB_STATE_UPDATING": "in_progress",
+ "JOB_STATE_PARTIALLY_SUCCEEDED": "completed",
+ }
+
+ vertex_state = response.get("state", "JOB_STATE_UNSPECIFIED")
+ return state_mapping[vertex_state]
+
+ @classmethod
+ def _get_gcs_uri_prefix_from_file(cls, input_file_id: str) -> str:
+ """
+ Gets the gcs uri prefix from the input file id
+
+ Example:
+ input_file_id: "gs://litellm-testing-bucket/vtx_batch.jsonl"
+ returns: "gs://litellm-testing-bucket"
+
+ input_file_id: "gs://litellm-testing-bucket/batches/vtx_batch.jsonl"
+ returns: "gs://litellm-testing-bucket/batches"
+ """
+ # Split the path and remove the filename
+ path_parts = input_file_id.rsplit("/", 1)
+ return path_parts[0]
+
+ @classmethod
+ def _get_model_from_gcs_file(cls, gcs_file_uri: str) -> str:
+ """
+ Extracts the model from the gcs file uri
+
+ When files are uploaded using LiteLLM (/v1/files), the model is stored in the gcs file uri
+
+ Why?
+ - Because Vertex Requires the `model` param in create batch jobs request, but OpenAI does not require this
+
+
+ gcs_file_uri format: gs://litellm-testing-bucket/litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/e9412502-2c91-42a6-8e61-f5c294cc0fc8
+ returns: "publishers/google/models/gemini-1.5-flash-001"
+ """
+ from urllib.parse import unquote
+
+ decoded_uri = unquote(gcs_file_uri)
+
+ model_path = decoded_uri.split("publishers/")[1]
+ parts = model_path.split("/")
+ model = f"publishers/{'/'.join(parts[:3])}"
+ return model