diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/fireworks_ai/chat/transformation.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/fireworks_ai/chat/transformation.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/llms/fireworks_ai/chat/transformation.py | 262 |
1 files changed, 262 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/fireworks_ai/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/fireworks_ai/chat/transformation.py new file mode 100644 index 00000000..1c82f24a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/llms/fireworks_ai/chat/transformation.py @@ -0,0 +1,262 @@ +from typing import List, Literal, Optional, Tuple, Union, cast + +import litellm +from litellm.secret_managers.main import get_secret_str +from litellm.types.llms.openai import AllMessageValues, ChatCompletionImageObject +from litellm.types.utils import ProviderSpecificModelInfo + +from ...openai.chat.gpt_transformation import OpenAIGPTConfig + + +class FireworksAIConfig(OpenAIGPTConfig): + """ + Reference: https://docs.fireworks.ai/api-reference/post-chatcompletions + + The class `FireworksAIConfig` provides configuration for the Fireworks's Chat Completions API interface. Below are the parameters: + """ + + tools: Optional[list] = None + tool_choice: Optional[Union[str, dict]] = None + max_tokens: Optional[int] = None + temperature: Optional[int] = None + top_p: Optional[int] = None + top_k: Optional[int] = None + frequency_penalty: Optional[int] = None + presence_penalty: Optional[int] = None + n: Optional[int] = None + stop: Optional[Union[str, list]] = None + response_format: Optional[dict] = None + user: Optional[str] = None + logprobs: Optional[int] = None + + # Non OpenAI parameters - Fireworks AI only params + prompt_truncate_length: Optional[int] = None + context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None + + def __init__( + self, + tools: Optional[list] = None, + tool_choice: Optional[Union[str, dict]] = None, + max_tokens: Optional[int] = None, + temperature: Optional[int] = None, + top_p: Optional[int] = None, + top_k: Optional[int] = None, + frequency_penalty: Optional[int] = None, + presence_penalty: Optional[int] = None, + n: Optional[int] = None, + stop: Optional[Union[str, list]] = None, + response_format: Optional[dict] = None, + user: Optional[str] = None, + logprobs: Optional[int] = None, + prompt_truncate_length: Optional[int] = None, + context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None, + ) -> None: + locals_ = locals().copy() + for key, value in locals_.items(): + if key != "self" and value is not None: + setattr(self.__class__, key, value) + + @classmethod + def get_config(cls): + return super().get_config() + + def get_supported_openai_params(self, model: str): + return [ + "stream", + "tools", + "tool_choice", + "max_completion_tokens", + "max_tokens", + "temperature", + "top_p", + "top_k", + "frequency_penalty", + "presence_penalty", + "n", + "stop", + "response_format", + "user", + "logprobs", + "prompt_truncate_length", + "context_length_exceeded_behavior", + ] + + def map_openai_params( + self, + non_default_params: dict, + optional_params: dict, + model: str, + drop_params: bool, + ) -> dict: + + supported_openai_params = self.get_supported_openai_params(model=model) + is_tools_set = any( + param == "tools" and value is not None + for param, value in non_default_params.items() + ) + + for param, value in non_default_params.items(): + if param == "tool_choice": + if value == "required": + # relevant issue: https://github.com/BerriAI/litellm/issues/4416 + optional_params["tool_choice"] = "any" + else: + # pass through the value of tool choice + optional_params["tool_choice"] = value + elif param == "response_format": + + if ( + is_tools_set + ): # fireworks ai doesn't support tools and response_format together + optional_params = self._add_response_format_to_tools( + optional_params=optional_params, + value=value, + is_response_format_supported=False, + enforce_tool_choice=False, # tools and response_format are both set, don't enforce tool_choice + ) + elif "json_schema" in value: + optional_params["response_format"] = { + "type": "json_object", + "schema": value["json_schema"]["schema"], + } + else: + optional_params["response_format"] = value + elif param == "max_completion_tokens": + optional_params["max_tokens"] = value + elif param in supported_openai_params: + if value is not None: + optional_params[param] = value + + return optional_params + + def _add_transform_inline_image_block( + self, + content: ChatCompletionImageObject, + model: str, + disable_add_transform_inline_image_block: Optional[bool], + ) -> ChatCompletionImageObject: + """ + Add transform_inline to the image_url (allows non-vision models to parse documents/images/etc.) + - ignore if model is a vision model + - ignore if user has disabled this feature + """ + if ( + "vision" in model or disable_add_transform_inline_image_block + ): # allow user to toggle this feature. + return content + if isinstance(content["image_url"], str): + content["image_url"] = f"{content['image_url']}#transform=inline" + elif isinstance(content["image_url"], dict): + content["image_url"][ + "url" + ] = f"{content['image_url']['url']}#transform=inline" + return content + + def _transform_messages_helper( + self, messages: List[AllMessageValues], model: str, litellm_params: dict + ) -> List[AllMessageValues]: + """ + Add 'transform=inline' to the url of the image_url + """ + disable_add_transform_inline_image_block = cast( + Optional[bool], + litellm_params.get("disable_add_transform_inline_image_block") + or litellm.disable_add_transform_inline_image_block, + ) + for message in messages: + if message["role"] == "user": + _message_content = message.get("content") + if _message_content is not None and isinstance(_message_content, list): + for content in _message_content: + if content["type"] == "image_url": + content = self._add_transform_inline_image_block( + content=content, + model=model, + disable_add_transform_inline_image_block=disable_add_transform_inline_image_block, + ) + return messages + + def get_provider_info(self, model: str) -> ProviderSpecificModelInfo: + provider_specific_model_info = ProviderSpecificModelInfo( + supports_function_calling=True, + supports_prompt_caching=True, # https://docs.fireworks.ai/guides/prompt-caching + supports_pdf_input=True, # via document inlining + supports_vision=True, # via document inlining + ) + return provider_specific_model_info + + def transform_request( + self, + model: str, + messages: List[AllMessageValues], + optional_params: dict, + litellm_params: dict, + headers: dict, + ) -> dict: + if not model.startswith("accounts/"): + model = f"accounts/fireworks/models/{model}" + messages = self._transform_messages_helper( + messages=messages, model=model, litellm_params=litellm_params + ) + return super().transform_request( + model=model, + messages=messages, + optional_params=optional_params, + litellm_params=litellm_params, + headers=headers, + ) + + def _get_openai_compatible_provider_info( + self, api_base: Optional[str], api_key: Optional[str] + ) -> Tuple[Optional[str], Optional[str]]: + api_base = ( + api_base + or get_secret_str("FIREWORKS_API_BASE") + or "https://api.fireworks.ai/inference/v1" + ) # type: ignore + dynamic_api_key = api_key or ( + get_secret_str("FIREWORKS_API_KEY") + or get_secret_str("FIREWORKS_AI_API_KEY") + or get_secret_str("FIREWORKSAI_API_KEY") + or get_secret_str("FIREWORKS_AI_TOKEN") + ) + return api_base, dynamic_api_key + + def get_models(self, api_key: Optional[str] = None, api_base: Optional[str] = None): + + api_base, api_key = self._get_openai_compatible_provider_info( + api_base=api_base, api_key=api_key + ) + if api_base is None or api_key is None: + raise ValueError( + "FIREWORKS_API_BASE or FIREWORKS_API_KEY is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint." + ) + + account_id = get_secret_str("FIREWORKS_ACCOUNT_ID") + if account_id is None: + raise ValueError( + "FIREWORKS_ACCOUNT_ID is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint." + ) + + response = litellm.module_level_client.get( + url=f"{api_base}/v1/accounts/{account_id}/models", + headers={"Authorization": f"Bearer {api_key}"}, + ) + + if response.status_code != 200: + raise ValueError( + f"Failed to fetch models from Fireworks AI. Status code: {response.status_code}, Response: {response.json()}" + ) + + models = response.json()["models"] + + return ["fireworks_ai/" + model["name"] for model in models] + + @staticmethod + def get_api_key(api_key: Optional[str] = None) -> Optional[str]: + return api_key or ( + get_secret_str("FIREWORKS_API_KEY") + or get_secret_str("FIREWORKS_AI_API_KEY") + or get_secret_str("FIREWORKSAI_API_KEY") + or get_secret_str("FIREWORKS_AI_TOKEN") + ) |