aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/handler.py84
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/transformation.py106
2 files changed, 190 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/handler.py
new file mode 100644
index 00000000..abb71474
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/handler.py
@@ -0,0 +1,84 @@
+"""
+Handles the chat completion request for Databricks
+"""
+
+from typing import Callable, List, Optional, Union, cast
+
+from httpx._config import Timeout
+
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import CustomStreamingDecoder
+from litellm.utils import ModelResponse
+
+from ...openai_like.chat.handler import OpenAILikeChatHandler
+from ..common_utils import DatabricksBase
+from .transformation import DatabricksConfig
+
+
+class DatabricksChatCompletion(OpenAILikeChatHandler, DatabricksBase):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def completion(
+ self,
+ *,
+ model: str,
+ messages: list,
+ api_base: str,
+ custom_llm_provider: str,
+ custom_prompt_dict: dict,
+ model_response: ModelResponse,
+ print_verbose: Callable,
+ encoding,
+ api_key: Optional[str],
+ logging_obj,
+ optional_params: dict,
+ acompletion=None,
+ litellm_params=None,
+ logger_fn=None,
+ headers: Optional[dict] = None,
+ timeout: Optional[Union[float, Timeout]] = None,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ custom_endpoint: Optional[bool] = None,
+ streaming_decoder: Optional[CustomStreamingDecoder] = None,
+ fake_stream: bool = False,
+ ):
+ messages = DatabricksConfig()._transform_messages(
+ messages=cast(List[AllMessageValues], messages), model=model
+ )
+ api_base, headers = self.databricks_validate_environment(
+ api_base=api_base,
+ api_key=api_key,
+ endpoint_type="chat_completions",
+ custom_endpoint=custom_endpoint,
+ headers=headers,
+ )
+
+ if optional_params.get("stream") is True:
+ fake_stream = DatabricksConfig()._should_fake_stream(optional_params)
+ else:
+ fake_stream = False
+
+ return super().completion(
+ model=model,
+ messages=messages,
+ api_base=api_base,
+ custom_llm_provider=custom_llm_provider,
+ custom_prompt_dict=custom_prompt_dict,
+ model_response=model_response,
+ print_verbose=print_verbose,
+ encoding=encoding,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ acompletion=acompletion,
+ litellm_params=litellm_params,
+ logger_fn=logger_fn,
+ headers=headers,
+ timeout=timeout,
+ client=client,
+ custom_endpoint=True,
+ streaming_decoder=streaming_decoder,
+ fake_stream=fake_stream,
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/transformation.py
new file mode 100644
index 00000000..94e02034
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/databricks/chat/transformation.py
@@ -0,0 +1,106 @@
+"""
+Translates from OpenAI's `/v1/chat/completions` to Databricks' `/chat/completions`
+"""
+
+from typing import List, Optional, Union
+
+from pydantic import BaseModel
+
+from litellm.litellm_core_utils.prompt_templates.common_utils import (
+ handle_messages_with_content_list_to_str_conversion,
+ strip_name_from_messages,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import ProviderField
+
+from ...openai_like.chat.transformation import OpenAILikeChatConfig
+
+
+class DatabricksConfig(OpenAILikeChatConfig):
+ """
+ Reference: https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
+ """
+
+ max_tokens: Optional[int] = None
+ temperature: Optional[int] = None
+ top_p: Optional[int] = None
+ top_k: Optional[int] = None
+ stop: Optional[Union[List[str], str]] = None
+ n: Optional[int] = None
+
+ def __init__(
+ self,
+ max_tokens: Optional[int] = None,
+ temperature: Optional[int] = None,
+ top_p: Optional[int] = None,
+ top_k: Optional[int] = None,
+ stop: Optional[Union[List[str], str]] = None,
+ n: Optional[int] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def get_required_params(self) -> List[ProviderField]:
+ """For a given provider, return it's required fields with a description"""
+ return [
+ ProviderField(
+ field_name="api_key",
+ field_type="string",
+ field_description="Your Databricks API Key.",
+ field_value="dapi...",
+ ),
+ ProviderField(
+ field_name="api_base",
+ field_type="string",
+ field_description="Your Databricks API Base.",
+ field_value="https://adb-..",
+ ),
+ ]
+
+ def get_supported_openai_params(self, model: Optional[str] = None) -> list:
+ return [
+ "stream",
+ "stop",
+ "temperature",
+ "top_p",
+ "max_tokens",
+ "max_completion_tokens",
+ "n",
+ "response_format",
+ "tools",
+ "tool_choice",
+ ]
+
+ def _should_fake_stream(self, optional_params: dict) -> bool:
+ """
+ Databricks doesn't support 'response_format' while streaming
+ """
+ if optional_params.get("response_format") is not None:
+ return True
+
+ return False
+
+ def _transform_messages(
+ self, messages: List[AllMessageValues], model: str
+ ) -> List[AllMessageValues]:
+ """
+ Databricks does not support:
+ - content in list format.
+ - 'name' in user message.
+ """
+ new_messages = []
+ for idx, message in enumerate(messages):
+ if isinstance(message, BaseModel):
+ _message = message.model_dump(exclude_none=True)
+ else:
+ _message = message
+ new_messages.append(_message)
+ new_messages = handle_messages_with_content_list_to_str_conversion(new_messages)
+ new_messages = strip_name_from_messages(new_messages)
+ return super()._transform_messages(messages=new_messages, model=model)