aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py210
1 files changed, 210 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py
new file mode 100644
index 00000000..1b93c526
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure/batches/handler.py
@@ -0,0 +1,210 @@
+"""
+Azure Batches API Handler
+"""
+
+from typing import Any, Coroutine, Optional, Union, cast
+
+import httpx
+
+from litellm.llms.azure.azure import AsyncAzureOpenAI, AzureOpenAI
+from litellm.types.llms.openai import (
+ Batch,
+ CancelBatchRequest,
+ CreateBatchRequest,
+ RetrieveBatchRequest,
+)
+from litellm.types.utils import LiteLLMBatch
+
+from ..common_utils import BaseAzureLLM
+
+
+class AzureBatchesAPI(BaseAzureLLM):
+ """
+ Azure methods to support for batches
+ - create_batch()
+ - retrieve_batch()
+ - cancel_batch()
+ - list_batch()
+ """
+
+ def __init__(self) -> None:
+ super().__init__()
+
+ async def acreate_batch(
+ self,
+ create_batch_data: CreateBatchRequest,
+ azure_client: AsyncAzureOpenAI,
+ ) -> LiteLLMBatch:
+ response = await azure_client.batches.create(**create_batch_data)
+ return LiteLLMBatch(**response.model_dump())
+
+ def create_batch(
+ self,
+ _is_async: bool,
+ create_batch_data: CreateBatchRequest,
+ api_key: Optional[str],
+ api_base: Optional[str],
+ api_version: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
+ litellm_params: Optional[dict] = None,
+ ) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]:
+ azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
+ self.get_azure_openai_client(
+ api_key=api_key,
+ api_base=api_base,
+ api_version=api_version,
+ client=client,
+ _is_async=_is_async,
+ litellm_params=litellm_params or {},
+ )
+ )
+ if azure_client is None:
+ raise ValueError(
+ "OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
+ )
+
+ if _is_async is True:
+ if not isinstance(azure_client, AsyncAzureOpenAI):
+ raise ValueError(
+ "OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
+ )
+ return self.acreate_batch( # type: ignore
+ create_batch_data=create_batch_data, azure_client=azure_client
+ )
+ response = cast(AzureOpenAI, azure_client).batches.create(**create_batch_data)
+ return LiteLLMBatch(**response.model_dump())
+
+ async def aretrieve_batch(
+ self,
+ retrieve_batch_data: RetrieveBatchRequest,
+ client: AsyncAzureOpenAI,
+ ) -> LiteLLMBatch:
+ response = await client.batches.retrieve(**retrieve_batch_data)
+ return LiteLLMBatch(**response.model_dump())
+
+ def retrieve_batch(
+ self,
+ _is_async: bool,
+ retrieve_batch_data: RetrieveBatchRequest,
+ api_key: Optional[str],
+ api_base: Optional[str],
+ api_version: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ client: Optional[AzureOpenAI] = None,
+ litellm_params: Optional[dict] = None,
+ ):
+ azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
+ self.get_azure_openai_client(
+ api_key=api_key,
+ api_base=api_base,
+ api_version=api_version,
+ client=client,
+ _is_async=_is_async,
+ litellm_params=litellm_params or {},
+ )
+ )
+ if azure_client is None:
+ raise ValueError(
+ "OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
+ )
+
+ if _is_async is True:
+ if not isinstance(azure_client, AsyncAzureOpenAI):
+ raise ValueError(
+ "OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
+ )
+ return self.aretrieve_batch( # type: ignore
+ retrieve_batch_data=retrieve_batch_data, client=azure_client
+ )
+ response = cast(AzureOpenAI, azure_client).batches.retrieve(
+ **retrieve_batch_data
+ )
+ return LiteLLMBatch(**response.model_dump())
+
+ async def acancel_batch(
+ self,
+ cancel_batch_data: CancelBatchRequest,
+ client: AsyncAzureOpenAI,
+ ) -> Batch:
+ response = await client.batches.cancel(**cancel_batch_data)
+ return response
+
+ def cancel_batch(
+ self,
+ _is_async: bool,
+ cancel_batch_data: CancelBatchRequest,
+ api_key: Optional[str],
+ api_base: Optional[str],
+ api_version: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ client: Optional[AzureOpenAI] = None,
+ litellm_params: Optional[dict] = None,
+ ):
+ azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
+ self.get_azure_openai_client(
+ api_key=api_key,
+ api_base=api_base,
+ api_version=api_version,
+ client=client,
+ _is_async=_is_async,
+ litellm_params=litellm_params or {},
+ )
+ )
+ if azure_client is None:
+ raise ValueError(
+ "OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
+ )
+ response = azure_client.batches.cancel(**cancel_batch_data)
+ return response
+
+ async def alist_batches(
+ self,
+ client: AsyncAzureOpenAI,
+ after: Optional[str] = None,
+ limit: Optional[int] = None,
+ ):
+ response = await client.batches.list(after=after, limit=limit) # type: ignore
+ return response
+
+ def list_batches(
+ self,
+ _is_async: bool,
+ api_key: Optional[str],
+ api_base: Optional[str],
+ api_version: Optional[str],
+ timeout: Union[float, httpx.Timeout],
+ max_retries: Optional[int],
+ after: Optional[str] = None,
+ limit: Optional[int] = None,
+ client: Optional[AzureOpenAI] = None,
+ litellm_params: Optional[dict] = None,
+ ):
+ azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
+ self.get_azure_openai_client(
+ api_key=api_key,
+ api_base=api_base,
+ api_version=api_version,
+ client=client,
+ _is_async=_is_async,
+ litellm_params=litellm_params or {},
+ )
+ )
+ if azure_client is None:
+ raise ValueError(
+ "OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
+ )
+
+ if _is_async is True:
+ if not isinstance(azure_client, AsyncAzureOpenAI):
+ raise ValueError(
+ "OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
+ )
+ return self.alist_batches( # type: ignore
+ client=azure_client, after=after, limit=limit
+ )
+ response = azure_client.batches.list(after=after, limit=limit) # type: ignore
+ return response