aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py831
1 files changed, 831 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py
new file mode 100644
index 00000000..1a77c453
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/chat/transformation.py
@@ -0,0 +1,831 @@
+import json
+import time
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, cast
+
+import httpx
+
+import litellm
+from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
+from litellm.litellm_core_utils.core_helpers import map_finish_reason
+from litellm.litellm_core_utils.prompt_templates.factory import anthropic_messages_pt
+from litellm.llms.base_llm.base_utils import type_to_response_format_param
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.anthropic import (
+ AllAnthropicToolsValues,
+ AnthropicComputerTool,
+ AnthropicHostedTools,
+ AnthropicInputSchema,
+ AnthropicMessagesTool,
+ AnthropicMessagesToolChoice,
+ AnthropicSystemMessageContent,
+)
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ ChatCompletionCachedContent,
+ ChatCompletionSystemMessage,
+ ChatCompletionThinkingBlock,
+ ChatCompletionToolCallChunk,
+ ChatCompletionToolCallFunctionChunk,
+ ChatCompletionToolParam,
+)
+from litellm.types.utils import Message as LitellmMessage
+from litellm.types.utils import PromptTokensDetailsWrapper
+from litellm.utils import ModelResponse, Usage, add_dummy_tool, has_tool_call_blocks
+
+from ..common_utils import AnthropicError, process_anthropic_headers
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+
+ LoggingClass = LiteLLMLoggingObj
+else:
+ LoggingClass = Any
+
+
+class AnthropicConfig(BaseConfig):
+ """
+ Reference: https://docs.anthropic.com/claude/reference/messages_post
+
+ to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
+ """
+
+ max_tokens: Optional[int] = (
+ 4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
+ )
+ stop_sequences: Optional[list] = None
+ temperature: Optional[int] = None
+ top_p: Optional[int] = None
+ top_k: Optional[int] = None
+ metadata: Optional[dict] = None
+ system: Optional[str] = None
+
+ def __init__(
+ self,
+ max_tokens: Optional[
+ int
+ ] = 4096, # You can pass in a value yourself or use the default value 4096
+ stop_sequences: Optional[list] = None,
+ temperature: Optional[int] = None,
+ top_p: Optional[int] = None,
+ top_k: Optional[int] = None,
+ metadata: Optional[dict] = None,
+ system: Optional[str] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def get_supported_openai_params(self, model: str):
+ params = [
+ "stream",
+ "stop",
+ "temperature",
+ "top_p",
+ "max_tokens",
+ "max_completion_tokens",
+ "tools",
+ "tool_choice",
+ "extra_headers",
+ "parallel_tool_calls",
+ "response_format",
+ "user",
+ ]
+
+ if "claude-3-7-sonnet" in model:
+ params.append("thinking")
+
+ return params
+
+ def get_json_schema_from_pydantic_object(
+ self, response_format: Union[Any, Dict, None]
+ ) -> Optional[dict]:
+
+ return type_to_response_format_param(
+ response_format, ref_template="/$defs/{model}"
+ ) # Relevant issue: https://github.com/BerriAI/litellm/issues/7755
+
+ def get_cache_control_headers(self) -> dict:
+ return {
+ "anthropic-version": "2023-06-01",
+ "anthropic-beta": "prompt-caching-2024-07-31",
+ }
+
+ def get_anthropic_headers(
+ self,
+ api_key: str,
+ anthropic_version: Optional[str] = None,
+ computer_tool_used: bool = False,
+ prompt_caching_set: bool = False,
+ pdf_used: bool = False,
+ is_vertex_request: bool = False,
+ user_anthropic_beta_headers: Optional[List[str]] = None,
+ ) -> dict:
+
+ betas = set()
+ if prompt_caching_set:
+ betas.add("prompt-caching-2024-07-31")
+ if computer_tool_used:
+ betas.add("computer-use-2024-10-22")
+ if pdf_used:
+ betas.add("pdfs-2024-09-25")
+ headers = {
+ "anthropic-version": anthropic_version or "2023-06-01",
+ "x-api-key": api_key,
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+
+ if user_anthropic_beta_headers is not None:
+ betas.update(user_anthropic_beta_headers)
+
+ # Don't send any beta headers to Vertex, Vertex has failed requests when they are sent
+ if is_vertex_request is True:
+ pass
+ elif len(betas) > 0:
+ headers["anthropic-beta"] = ",".join(betas)
+
+ return headers
+
+ def _map_tool_choice(
+ self, tool_choice: Optional[str], parallel_tool_use: Optional[bool]
+ ) -> Optional[AnthropicMessagesToolChoice]:
+ _tool_choice: Optional[AnthropicMessagesToolChoice] = None
+ if tool_choice == "auto":
+ _tool_choice = AnthropicMessagesToolChoice(
+ type="auto",
+ )
+ elif tool_choice == "required":
+ _tool_choice = AnthropicMessagesToolChoice(type="any")
+ elif isinstance(tool_choice, dict):
+ _tool_name = tool_choice.get("function", {}).get("name")
+ _tool_choice = AnthropicMessagesToolChoice(type="tool")
+ if _tool_name is not None:
+ _tool_choice["name"] = _tool_name
+
+ if parallel_tool_use is not None:
+ # Anthropic uses 'disable_parallel_tool_use' flag to determine if parallel tool use is allowed
+ # this is the inverse of the openai flag.
+ if _tool_choice is not None:
+ _tool_choice["disable_parallel_tool_use"] = not parallel_tool_use
+ else: # use anthropic defaults and make sure to send the disable_parallel_tool_use flag
+ _tool_choice = AnthropicMessagesToolChoice(
+ type="auto",
+ disable_parallel_tool_use=not parallel_tool_use,
+ )
+ return _tool_choice
+
+ def _map_tool_helper(
+ self, tool: ChatCompletionToolParam
+ ) -> AllAnthropicToolsValues:
+ returned_tool: Optional[AllAnthropicToolsValues] = None
+
+ if tool["type"] == "function" or tool["type"] == "custom":
+ _input_schema: dict = tool["function"].get(
+ "parameters",
+ {
+ "type": "object",
+ "properties": {},
+ },
+ )
+ input_schema: AnthropicInputSchema = AnthropicInputSchema(**_input_schema)
+ _tool = AnthropicMessagesTool(
+ name=tool["function"]["name"],
+ input_schema=input_schema,
+ )
+
+ _description = tool["function"].get("description")
+ if _description is not None:
+ _tool["description"] = _description
+
+ returned_tool = _tool
+
+ elif tool["type"].startswith("computer_"):
+ ## check if all required 'display_' params are given
+ if "parameters" not in tool["function"]:
+ raise ValueError("Missing required parameter: parameters")
+
+ _display_width_px: Optional[int] = tool["function"]["parameters"].get(
+ "display_width_px"
+ )
+ _display_height_px: Optional[int] = tool["function"]["parameters"].get(
+ "display_height_px"
+ )
+ if _display_width_px is None or _display_height_px is None:
+ raise ValueError(
+ "Missing required parameter: display_width_px or display_height_px"
+ )
+
+ _computer_tool = AnthropicComputerTool(
+ type=tool["type"],
+ name=tool["function"].get("name", "computer"),
+ display_width_px=_display_width_px,
+ display_height_px=_display_height_px,
+ )
+
+ _display_number = tool["function"]["parameters"].get("display_number")
+ if _display_number is not None:
+ _computer_tool["display_number"] = _display_number
+
+ returned_tool = _computer_tool
+ elif tool["type"].startswith("bash_") or tool["type"].startswith(
+ "text_editor_"
+ ):
+ function_name = tool["function"].get("name")
+ if function_name is None:
+ raise ValueError("Missing required parameter: name")
+
+ returned_tool = AnthropicHostedTools(
+ type=tool["type"],
+ name=function_name,
+ )
+ if returned_tool is None:
+ raise ValueError(f"Unsupported tool type: {tool['type']}")
+
+ ## check if cache_control is set in the tool
+ _cache_control = tool.get("cache_control", None)
+ _cache_control_function = tool.get("function", {}).get("cache_control", None)
+ if _cache_control is not None:
+ returned_tool["cache_control"] = _cache_control
+ elif _cache_control_function is not None and isinstance(
+ _cache_control_function, dict
+ ):
+ returned_tool["cache_control"] = ChatCompletionCachedContent(
+ **_cache_control_function # type: ignore
+ )
+
+ return returned_tool
+
+ def _map_tools(self, tools: List) -> List[AllAnthropicToolsValues]:
+ anthropic_tools = []
+ for tool in tools:
+ if "input_schema" in tool: # assume in anthropic format
+ anthropic_tools.append(tool)
+ else: # assume openai tool call
+ new_tool = self._map_tool_helper(tool)
+
+ anthropic_tools.append(new_tool)
+ return anthropic_tools
+
+ def _map_stop_sequences(
+ self, stop: Optional[Union[str, List[str]]]
+ ) -> Optional[List[str]]:
+ new_stop: Optional[List[str]] = None
+ if isinstance(stop, str):
+ if (
+ stop.isspace() and litellm.drop_params is True
+ ): # anthropic doesn't allow whitespace characters as stop-sequences
+ return new_stop
+ new_stop = [stop]
+ elif isinstance(stop, list):
+ new_v = []
+ for v in stop:
+ if (
+ v.isspace() and litellm.drop_params is True
+ ): # anthropic doesn't allow whitespace characters as stop-sequences
+ continue
+ new_v.append(v)
+ if len(new_v) > 0:
+ new_stop = new_v
+ return new_stop
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "max_tokens":
+ optional_params["max_tokens"] = value
+ if param == "max_completion_tokens":
+ optional_params["max_tokens"] = value
+ if param == "tools":
+ # check if optional params already has tools
+ tool_value = self._map_tools(value)
+ optional_params = self._add_tools_to_optional_params(
+ optional_params=optional_params, tools=tool_value
+ )
+ if param == "tool_choice" or param == "parallel_tool_calls":
+ _tool_choice: Optional[AnthropicMessagesToolChoice] = (
+ self._map_tool_choice(
+ tool_choice=non_default_params.get("tool_choice"),
+ parallel_tool_use=non_default_params.get("parallel_tool_calls"),
+ )
+ )
+
+ if _tool_choice is not None:
+ optional_params["tool_choice"] = _tool_choice
+ if param == "stream" and value is True:
+ optional_params["stream"] = value
+ if param == "stop" and (isinstance(value, str) or isinstance(value, list)):
+ _value = self._map_stop_sequences(value)
+ if _value is not None:
+ optional_params["stop_sequences"] = _value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "top_p":
+ optional_params["top_p"] = value
+ if param == "response_format" and isinstance(value, dict):
+
+ ignore_response_format_types = ["text"]
+ if value["type"] in ignore_response_format_types: # value is a no-op
+ continue
+
+ json_schema: Optional[dict] = None
+ if "response_schema" in value:
+ json_schema = value["response_schema"]
+ elif "json_schema" in value:
+ json_schema = value["json_schema"]["schema"]
+ """
+ When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
+ - You usually want to provide a single tool
+ - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
+ - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
+ """
+
+ _tool_choice = {"name": RESPONSE_FORMAT_TOOL_NAME, "type": "tool"}
+ _tool = self._create_json_tool_call_for_response_format(
+ json_schema=json_schema,
+ )
+ optional_params = self._add_tools_to_optional_params(
+ optional_params=optional_params, tools=[_tool]
+ )
+ optional_params["tool_choice"] = _tool_choice
+ optional_params["json_mode"] = True
+ if param == "user":
+ optional_params["metadata"] = {"user_id": value}
+ if param == "thinking":
+ optional_params["thinking"] = value
+ return optional_params
+
+ def _create_json_tool_call_for_response_format(
+ self,
+ json_schema: Optional[dict] = None,
+ ) -> AnthropicMessagesTool:
+ """
+ Handles creating a tool call for getting responses in JSON format.
+
+ Args:
+ json_schema (Optional[dict]): The JSON schema the response should be in
+
+ Returns:
+ AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
+ """
+ _input_schema: AnthropicInputSchema = AnthropicInputSchema(
+ type="object",
+ )
+
+ if json_schema is None:
+ # Anthropic raises a 400 BadRequest error if properties is passed as None
+ # see usage with additionalProperties (Example 5) https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
+ _input_schema["additionalProperties"] = True
+ _input_schema["properties"] = {}
+ else:
+ _input_schema.update(cast(AnthropicInputSchema, json_schema))
+
+ _tool = AnthropicMessagesTool(
+ name=RESPONSE_FORMAT_TOOL_NAME, input_schema=_input_schema
+ )
+ return _tool
+
+ def is_cache_control_set(self, messages: List[AllMessageValues]) -> bool:
+ """
+ Return if {"cache_control": ..} in message content block
+
+ Used to check if anthropic prompt caching headers need to be set.
+ """
+ for message in messages:
+ if message.get("cache_control", None) is not None:
+ return True
+ _message_content = message.get("content")
+ if _message_content is not None and isinstance(_message_content, list):
+ for content in _message_content:
+ if "cache_control" in content:
+ return True
+
+ return False
+
+ def is_computer_tool_used(
+ self, tools: Optional[List[AllAnthropicToolsValues]]
+ ) -> bool:
+ if tools is None:
+ return False
+ for tool in tools:
+ if "type" in tool and tool["type"].startswith("computer_"):
+ return True
+ return False
+
+ def is_pdf_used(self, messages: List[AllMessageValues]) -> bool:
+ """
+ Set to true if media passed into messages.
+
+ """
+ for message in messages:
+ if (
+ "content" in message
+ and message["content"] is not None
+ and isinstance(message["content"], list)
+ ):
+ for content in message["content"]:
+ if "type" in content and content["type"] != "text":
+ return True
+ return False
+
+ def translate_system_message(
+ self, messages: List[AllMessageValues]
+ ) -> List[AnthropicSystemMessageContent]:
+ """
+ Translate system message to anthropic format.
+
+ Removes system message from the original list and returns a new list of anthropic system message content.
+ """
+ system_prompt_indices = []
+ anthropic_system_message_list: List[AnthropicSystemMessageContent] = []
+ for idx, message in enumerate(messages):
+ if message["role"] == "system":
+ valid_content: bool = False
+ system_message_block = ChatCompletionSystemMessage(**message)
+ if isinstance(system_message_block["content"], str):
+ anthropic_system_message_content = AnthropicSystemMessageContent(
+ type="text",
+ text=system_message_block["content"],
+ )
+ if "cache_control" in system_message_block:
+ anthropic_system_message_content["cache_control"] = (
+ system_message_block["cache_control"]
+ )
+ anthropic_system_message_list.append(
+ anthropic_system_message_content
+ )
+ valid_content = True
+ elif isinstance(message["content"], list):
+ for _content in message["content"]:
+ anthropic_system_message_content = (
+ AnthropicSystemMessageContent(
+ type=_content.get("type"),
+ text=_content.get("text"),
+ )
+ )
+ if "cache_control" in _content:
+ anthropic_system_message_content["cache_control"] = (
+ _content["cache_control"]
+ )
+
+ anthropic_system_message_list.append(
+ anthropic_system_message_content
+ )
+ valid_content = True
+
+ if valid_content:
+ system_prompt_indices.append(idx)
+ if len(system_prompt_indices) > 0:
+ for idx in reversed(system_prompt_indices):
+ messages.pop(idx)
+
+ return anthropic_system_message_list
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ """
+ Translate messages to anthropic format.
+ """
+ ## VALIDATE REQUEST
+ """
+ Anthropic doesn't support tool calling without `tools=` param specified.
+ """
+ if (
+ "tools" not in optional_params
+ and messages is not None
+ and has_tool_call_blocks(messages)
+ ):
+ if litellm.modify_params:
+ optional_params["tools"] = self._map_tools(
+ add_dummy_tool(custom_llm_provider="anthropic")
+ )
+ else:
+ raise litellm.UnsupportedParamsError(
+ message="Anthropic doesn't support tool calling without `tools=` param specified. Pass `tools=` param OR set `litellm.modify_params = True` // `litellm_settings::modify_params: True` to add dummy tool to the request.",
+ model="",
+ llm_provider="anthropic",
+ )
+
+ # Separate system prompt from rest of message
+ anthropic_system_message_list = self.translate_system_message(messages=messages)
+ # Handling anthropic API Prompt Caching
+ if len(anthropic_system_message_list) > 0:
+ optional_params["system"] = anthropic_system_message_list
+ # Format rest of message according to anthropic guidelines
+ try:
+ anthropic_messages = anthropic_messages_pt(
+ model=model,
+ messages=messages,
+ llm_provider="anthropic",
+ )
+ except Exception as e:
+ raise AnthropicError(
+ status_code=400,
+ message="{}\nReceived Messages={}".format(str(e), messages),
+ ) # don't use verbose_logger.exception, if exception is raised
+
+ ## Load Config
+ config = litellm.AnthropicConfig.get_config()
+ for k, v in config.items():
+ if (
+ k not in optional_params
+ ): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
+ optional_params[k] = v
+
+ ## Handle user_id in metadata
+ _litellm_metadata = litellm_params.get("metadata", None)
+ if (
+ _litellm_metadata
+ and isinstance(_litellm_metadata, dict)
+ and "user_id" in _litellm_metadata
+ ):
+ optional_params["metadata"] = {"user_id": _litellm_metadata["user_id"]}
+
+ data = {
+ "model": model,
+ "messages": anthropic_messages,
+ **optional_params,
+ }
+
+ return data
+
+ def _transform_response_for_json_mode(
+ self,
+ json_mode: Optional[bool],
+ tool_calls: List[ChatCompletionToolCallChunk],
+ ) -> Optional[LitellmMessage]:
+ _message: Optional[LitellmMessage] = None
+ if json_mode is True and len(tool_calls) == 1:
+ # check if tool name is the default tool name
+ json_mode_content_str: Optional[str] = None
+ if (
+ "name" in tool_calls[0]["function"]
+ and tool_calls[0]["function"]["name"] == RESPONSE_FORMAT_TOOL_NAME
+ ):
+ json_mode_content_str = tool_calls[0]["function"].get("arguments")
+ if json_mode_content_str is not None:
+ _message = AnthropicConfig._convert_tool_response_to_message(
+ tool_calls=tool_calls,
+ )
+ return _message
+
+ def extract_response_content(self, completion_response: dict) -> Tuple[
+ str,
+ Optional[List[Any]],
+ Optional[List[ChatCompletionThinkingBlock]],
+ Optional[str],
+ List[ChatCompletionToolCallChunk],
+ ]:
+ text_content = ""
+ citations: Optional[List[Any]] = None
+ thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
+ reasoning_content: Optional[str] = None
+ tool_calls: List[ChatCompletionToolCallChunk] = []
+ for idx, content in enumerate(completion_response["content"]):
+ if content["type"] == "text":
+ text_content += content["text"]
+ ## TOOL CALLING
+ elif content["type"] == "tool_use":
+ tool_calls.append(
+ ChatCompletionToolCallChunk(
+ id=content["id"],
+ type="function",
+ function=ChatCompletionToolCallFunctionChunk(
+ name=content["name"],
+ arguments=json.dumps(content["input"]),
+ ),
+ index=idx,
+ )
+ )
+ ## CITATIONS
+ if content.get("citations", None) is not None:
+ if citations is None:
+ citations = []
+ citations.append(content["citations"])
+ if content.get("thinking", None) is not None:
+ if thinking_blocks is None:
+ thinking_blocks = []
+ thinking_blocks.append(cast(ChatCompletionThinkingBlock, content))
+ if thinking_blocks is not None:
+ reasoning_content = ""
+ for block in thinking_blocks:
+ if "thinking" in block:
+ reasoning_content += block["thinking"]
+ return text_content, citations, thinking_blocks, reasoning_content, tool_calls
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LoggingClass,
+ request_data: Dict,
+ messages: List[AllMessageValues],
+ optional_params: Dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ _hidden_params: Dict = {}
+ _hidden_params["additional_headers"] = process_anthropic_headers(
+ dict(raw_response.headers)
+ )
+ ## LOGGING
+ logging_obj.post_call(
+ input=messages,
+ api_key=api_key,
+ original_response=raw_response.text,
+ additional_args={"complete_input_dict": request_data},
+ )
+
+ ## RESPONSE OBJECT
+ try:
+ completion_response = raw_response.json()
+ except Exception as e:
+ response_headers = getattr(raw_response, "headers", None)
+ raise AnthropicError(
+ message="Unable to get json response - {}, Original Response: {}".format(
+ str(e), raw_response.text
+ ),
+ status_code=raw_response.status_code,
+ headers=response_headers,
+ )
+ if "error" in completion_response:
+ response_headers = getattr(raw_response, "headers", None)
+ raise AnthropicError(
+ message=str(completion_response["error"]),
+ status_code=raw_response.status_code,
+ headers=response_headers,
+ )
+ else:
+ text_content = ""
+ citations: Optional[List[Any]] = None
+ thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
+ reasoning_content: Optional[str] = None
+ tool_calls: List[ChatCompletionToolCallChunk] = []
+
+ text_content, citations, thinking_blocks, reasoning_content, tool_calls = (
+ self.extract_response_content(completion_response=completion_response)
+ )
+
+ _message = litellm.Message(
+ tool_calls=tool_calls,
+ content=text_content or None,
+ provider_specific_fields={
+ "citations": citations,
+ "thinking_blocks": thinking_blocks,
+ },
+ thinking_blocks=thinking_blocks,
+ reasoning_content=reasoning_content,
+ )
+
+ ## HANDLE JSON MODE - anthropic returns single function call
+ json_mode_message = self._transform_response_for_json_mode(
+ json_mode=json_mode,
+ tool_calls=tool_calls,
+ )
+ if json_mode_message is not None:
+ completion_response["stop_reason"] = "stop"
+ _message = json_mode_message
+
+ model_response.choices[0].message = _message # type: ignore
+ model_response._hidden_params["original_response"] = completion_response[
+ "content"
+ ] # allow user to access raw anthropic tool calling response
+
+ model_response.choices[0].finish_reason = map_finish_reason(
+ completion_response["stop_reason"]
+ )
+
+ ## CALCULATING USAGE
+ prompt_tokens = completion_response["usage"]["input_tokens"]
+ completion_tokens = completion_response["usage"]["output_tokens"]
+ _usage = completion_response["usage"]
+ cache_creation_input_tokens: int = 0
+ cache_read_input_tokens: int = 0
+
+ model_response.created = int(time.time())
+ model_response.model = completion_response["model"]
+ if "cache_creation_input_tokens" in _usage:
+ cache_creation_input_tokens = _usage["cache_creation_input_tokens"]
+ prompt_tokens += cache_creation_input_tokens
+ if "cache_read_input_tokens" in _usage:
+ cache_read_input_tokens = _usage["cache_read_input_tokens"]
+ prompt_tokens += cache_read_input_tokens
+
+ prompt_tokens_details = PromptTokensDetailsWrapper(
+ cached_tokens=cache_read_input_tokens
+ )
+ total_tokens = prompt_tokens + completion_tokens
+ usage = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=total_tokens,
+ prompt_tokens_details=prompt_tokens_details,
+ cache_creation_input_tokens=cache_creation_input_tokens,
+ cache_read_input_tokens=cache_read_input_tokens,
+ )
+
+ setattr(model_response, "usage", usage) # type: ignore
+
+ model_response._hidden_params = _hidden_params
+ return model_response
+
+ @staticmethod
+ def _convert_tool_response_to_message(
+ tool_calls: List[ChatCompletionToolCallChunk],
+ ) -> Optional[LitellmMessage]:
+ """
+ In JSON mode, Anthropic API returns JSON schema as a tool call, we need to convert it to a message to follow the OpenAI format
+
+ """
+ ## HANDLE JSON MODE - anthropic returns single function call
+ json_mode_content_str: Optional[str] = tool_calls[0]["function"].get(
+ "arguments"
+ )
+ try:
+ if json_mode_content_str is not None:
+ args = json.loads(json_mode_content_str)
+ if (
+ isinstance(args, dict)
+ and (values := args.get("values")) is not None
+ ):
+ _message = litellm.Message(content=json.dumps(values))
+ return _message
+ else:
+ # a lot of the times the `values` key is not present in the tool response
+ # relevant issue: https://github.com/BerriAI/litellm/issues/6741
+ _message = litellm.Message(content=json.dumps(args))
+ return _message
+ except json.JSONDecodeError:
+ # json decode error does occur, return the original tool response str
+ return litellm.Message(content=json_mode_content_str)
+ return None
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return AnthropicError(
+ status_code=status_code,
+ message=error_message,
+ headers=cast(httpx.Headers, headers),
+ )
+
+ def _get_user_anthropic_beta_headers(
+ self, anthropic_beta_header: Optional[str]
+ ) -> Optional[List[str]]:
+ if anthropic_beta_header is None:
+ return None
+ return anthropic_beta_header.split(",")
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> Dict:
+ if api_key is None:
+ raise litellm.AuthenticationError(
+ message="Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params. Please set `ANTHROPIC_API_KEY` in your environment vars",
+ llm_provider="anthropic",
+ model=model,
+ )
+
+ tools = optional_params.get("tools")
+ prompt_caching_set = self.is_cache_control_set(messages=messages)
+ computer_tool_used = self.is_computer_tool_used(tools=tools)
+ pdf_used = self.is_pdf_used(messages=messages)
+ user_anthropic_beta_headers = self._get_user_anthropic_beta_headers(
+ anthropic_beta_header=headers.get("anthropic-beta")
+ )
+ anthropic_headers = self.get_anthropic_headers(
+ computer_tool_used=computer_tool_used,
+ prompt_caching_set=prompt_caching_set,
+ pdf_used=pdf_used,
+ api_key=api_key,
+ is_vertex_request=optional_params.get("is_vertex_request", False),
+ user_anthropic_beta_headers=user_anthropic_beta_headers,
+ )
+
+ headers = {**headers, **anthropic_headers}
+
+ return headers