about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py1789
1 files changed, 1789 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py b/.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py
new file mode 100644
index 00000000..d6e47b87
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/prometheus.py
@@ -0,0 +1,1789 @@
+# used for /metrics endpoint on LiteLLM Proxy
+#### What this does ####
+#    On success, log events to Prometheus
+import asyncio
+import sys
+from datetime import datetime, timedelta
+from typing import Any, Awaitable, Callable, List, Literal, Optional, Tuple, cast
+
+import litellm
+from litellm._logging import print_verbose, verbose_logger
+from litellm.integrations.custom_logger import CustomLogger
+from litellm.proxy._types import LiteLLM_TeamTable, UserAPIKeyAuth
+from litellm.types.integrations.prometheus import *
+from litellm.types.utils import StandardLoggingPayload
+from litellm.utils import get_end_user_id_for_cost_tracking
+
+
+class PrometheusLogger(CustomLogger):
+    # Class variables or attributes
+    def __init__(
+        self,
+        **kwargs,
+    ):
+        try:
+            from prometheus_client import Counter, Gauge, Histogram
+
+            from litellm.proxy.proxy_server import CommonProxyErrors, premium_user
+
+            if premium_user is not True:
+                verbose_logger.warning(
+                    f"🚨🚨🚨 Prometheus Metrics is on LiteLLM Enterprise\n🚨 {CommonProxyErrors.not_premium_user.value}"
+                )
+                self.litellm_not_a_premium_user_metric = Counter(
+                    name="litellm_not_a_premium_user_metric",
+                    documentation=f"🚨🚨🚨 Prometheus Metrics is on LiteLLM Enterprise. 🚨 {CommonProxyErrors.not_premium_user.value}",
+                )
+                return
+
+            self.litellm_proxy_failed_requests_metric = Counter(
+                name="litellm_proxy_failed_requests_metric",
+                documentation="Total number of failed responses from proxy - the client did not get a success response from litellm proxy",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_proxy_failed_requests_metric"
+                ),
+            )
+
+            self.litellm_proxy_total_requests_metric = Counter(
+                name="litellm_proxy_total_requests_metric",
+                documentation="Total number of requests made to the proxy server - track number of client side requests",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_proxy_total_requests_metric"
+                ),
+            )
+
+            # request latency metrics
+            self.litellm_request_total_latency_metric = Histogram(
+                "litellm_request_total_latency_metric",
+                "Total latency (seconds) for a request to LiteLLM",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_request_total_latency_metric"
+                ),
+                buckets=LATENCY_BUCKETS,
+            )
+
+            self.litellm_llm_api_latency_metric = Histogram(
+                "litellm_llm_api_latency_metric",
+                "Total latency (seconds) for a models LLM API call",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_llm_api_latency_metric"
+                ),
+                buckets=LATENCY_BUCKETS,
+            )
+
+            self.litellm_llm_api_time_to_first_token_metric = Histogram(
+                "litellm_llm_api_time_to_first_token_metric",
+                "Time to first token for a models LLM API call",
+                labelnames=[
+                    "model",
+                    "hashed_api_key",
+                    "api_key_alias",
+                    "team",
+                    "team_alias",
+                ],
+                buckets=LATENCY_BUCKETS,
+            )
+
+            # Counter for spend
+            self.litellm_spend_metric = Counter(
+                "litellm_spend_metric",
+                "Total spend on LLM requests",
+                labelnames=[
+                    "end_user",
+                    "hashed_api_key",
+                    "api_key_alias",
+                    "model",
+                    "team",
+                    "team_alias",
+                    "user",
+                ],
+            )
+
+            # Counter for total_output_tokens
+            self.litellm_tokens_metric = Counter(
+                "litellm_total_tokens",
+                "Total number of input + output tokens from LLM requests",
+                labelnames=[
+                    "end_user",
+                    "hashed_api_key",
+                    "api_key_alias",
+                    "model",
+                    "team",
+                    "team_alias",
+                    "user",
+                ],
+            )
+
+            self.litellm_input_tokens_metric = Counter(
+                "litellm_input_tokens",
+                "Total number of input tokens from LLM requests",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_input_tokens_metric"
+                ),
+            )
+
+            self.litellm_output_tokens_metric = Counter(
+                "litellm_output_tokens",
+                "Total number of output tokens from LLM requests",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_output_tokens_metric"
+                ),
+            )
+
+            # Remaining Budget for Team
+            self.litellm_remaining_team_budget_metric = Gauge(
+                "litellm_remaining_team_budget_metric",
+                "Remaining budget for team",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_remaining_team_budget_metric"
+                ),
+            )
+
+            # Max Budget for Team
+            self.litellm_team_max_budget_metric = Gauge(
+                "litellm_team_max_budget_metric",
+                "Maximum budget set for team",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_team_max_budget_metric"
+                ),
+            )
+
+            # Team Budget Reset At
+            self.litellm_team_budget_remaining_hours_metric = Gauge(
+                "litellm_team_budget_remaining_hours_metric",
+                "Remaining days for team budget to be reset",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_team_budget_remaining_hours_metric"
+                ),
+            )
+
+            # Remaining Budget for API Key
+            self.litellm_remaining_api_key_budget_metric = Gauge(
+                "litellm_remaining_api_key_budget_metric",
+                "Remaining budget for api key",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_remaining_api_key_budget_metric"
+                ),
+            )
+
+            # Max Budget for API Key
+            self.litellm_api_key_max_budget_metric = Gauge(
+                "litellm_api_key_max_budget_metric",
+                "Maximum budget set for api key",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_api_key_max_budget_metric"
+                ),
+            )
+
+            self.litellm_api_key_budget_remaining_hours_metric = Gauge(
+                "litellm_api_key_budget_remaining_hours_metric",
+                "Remaining hours for api key budget to be reset",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_api_key_budget_remaining_hours_metric"
+                ),
+            )
+
+            ########################################
+            # LiteLLM Virtual API KEY metrics
+            ########################################
+            # Remaining MODEL RPM limit for API Key
+            self.litellm_remaining_api_key_requests_for_model = Gauge(
+                "litellm_remaining_api_key_requests_for_model",
+                "Remaining Requests API Key can make for model (model based rpm limit on key)",
+                labelnames=["hashed_api_key", "api_key_alias", "model"],
+            )
+
+            # Remaining MODEL TPM limit for API Key
+            self.litellm_remaining_api_key_tokens_for_model = Gauge(
+                "litellm_remaining_api_key_tokens_for_model",
+                "Remaining Tokens API Key can make for model (model based tpm limit on key)",
+                labelnames=["hashed_api_key", "api_key_alias", "model"],
+            )
+
+            ########################################
+            # LLM API Deployment Metrics / analytics
+            ########################################
+
+            # Remaining Rate Limit for model
+            self.litellm_remaining_requests_metric = Gauge(
+                "litellm_remaining_requests",
+                "LLM Deployment Analytics - remaining requests for model, returned from LLM API Provider",
+                labelnames=[
+                    "model_group",
+                    "api_provider",
+                    "api_base",
+                    "litellm_model_name",
+                    "hashed_api_key",
+                    "api_key_alias",
+                ],
+            )
+
+            self.litellm_remaining_tokens_metric = Gauge(
+                "litellm_remaining_tokens",
+                "remaining tokens for model, returned from LLM API Provider",
+                labelnames=[
+                    "model_group",
+                    "api_provider",
+                    "api_base",
+                    "litellm_model_name",
+                    "hashed_api_key",
+                    "api_key_alias",
+                ],
+            )
+
+            self.litellm_overhead_latency_metric = Histogram(
+                "litellm_overhead_latency_metric",
+                "Latency overhead (milliseconds) added by LiteLLM processing",
+                labelnames=[
+                    "model_group",
+                    "api_provider",
+                    "api_base",
+                    "litellm_model_name",
+                    "hashed_api_key",
+                    "api_key_alias",
+                ],
+                buckets=LATENCY_BUCKETS,
+            )
+            # llm api provider budget metrics
+            self.litellm_provider_remaining_budget_metric = Gauge(
+                "litellm_provider_remaining_budget_metric",
+                "Remaining budget for provider - used when you set provider budget limits",
+                labelnames=["api_provider"],
+            )
+
+            # Get all keys
+            _logged_llm_labels = [
+                UserAPIKeyLabelNames.v2_LITELLM_MODEL_NAME.value,
+                UserAPIKeyLabelNames.MODEL_ID.value,
+                UserAPIKeyLabelNames.API_BASE.value,
+                UserAPIKeyLabelNames.API_PROVIDER.value,
+            ]
+            team_and_key_labels = [
+                "hashed_api_key",
+                "api_key_alias",
+                "team",
+                "team_alias",
+            ]
+
+            # Metric for deployment state
+            self.litellm_deployment_state = Gauge(
+                "litellm_deployment_state",
+                "LLM Deployment Analytics - The state of the deployment: 0 = healthy, 1 = partial outage, 2 = complete outage",
+                labelnames=_logged_llm_labels,
+            )
+
+            self.litellm_deployment_cooled_down = Counter(
+                "litellm_deployment_cooled_down",
+                "LLM Deployment Analytics - Number of times a deployment has been cooled down by LiteLLM load balancing logic. exception_status is the status of the exception that caused the deployment to be cooled down",
+                labelnames=_logged_llm_labels + [EXCEPTION_STATUS],
+            )
+
+            self.litellm_deployment_success_responses = Counter(
+                name="litellm_deployment_success_responses",
+                documentation="LLM Deployment Analytics - Total number of successful LLM API calls via litellm",
+                labelnames=[REQUESTED_MODEL] + _logged_llm_labels + team_and_key_labels,
+            )
+            self.litellm_deployment_failure_responses = Counter(
+                name="litellm_deployment_failure_responses",
+                documentation="LLM Deployment Analytics - Total number of failed LLM API calls for a specific LLM deploymeny. exception_status is the status of the exception from the llm api",
+                labelnames=[REQUESTED_MODEL]
+                + _logged_llm_labels
+                + EXCEPTION_LABELS
+                + team_and_key_labels,
+            )
+            self.litellm_deployment_failure_by_tag_responses = Counter(
+                "litellm_deployment_failure_by_tag_responses",
+                "Total number of failed LLM API calls for a specific LLM deploymeny by custom metadata tags",
+                labelnames=[
+                    UserAPIKeyLabelNames.REQUESTED_MODEL.value,
+                    UserAPIKeyLabelNames.TAG.value,
+                ]
+                + _logged_llm_labels
+                + EXCEPTION_LABELS,
+            )
+            self.litellm_deployment_total_requests = Counter(
+                name="litellm_deployment_total_requests",
+                documentation="LLM Deployment Analytics - Total number of LLM API calls via litellm - success + failure",
+                labelnames=[REQUESTED_MODEL] + _logged_llm_labels + team_and_key_labels,
+            )
+
+            # Deployment Latency tracking
+            team_and_key_labels = [
+                "hashed_api_key",
+                "api_key_alias",
+                "team",
+                "team_alias",
+            ]
+            self.litellm_deployment_latency_per_output_token = Histogram(
+                name="litellm_deployment_latency_per_output_token",
+                documentation="LLM Deployment Analytics - Latency per output token",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_deployment_latency_per_output_token"
+                ),
+            )
+
+            self.litellm_deployment_successful_fallbacks = Counter(
+                "litellm_deployment_successful_fallbacks",
+                "LLM Deployment Analytics - Number of successful fallback requests from primary model -> fallback model",
+                PrometheusMetricLabels.get_labels(
+                    "litellm_deployment_successful_fallbacks"
+                ),
+            )
+
+            self.litellm_deployment_failed_fallbacks = Counter(
+                "litellm_deployment_failed_fallbacks",
+                "LLM Deployment Analytics - Number of failed fallback requests from primary model -> fallback model",
+                PrometheusMetricLabels.get_labels(
+                    "litellm_deployment_failed_fallbacks"
+                ),
+            )
+
+            self.litellm_llm_api_failed_requests_metric = Counter(
+                name="litellm_llm_api_failed_requests_metric",
+                documentation="deprecated - use litellm_proxy_failed_requests_metric",
+                labelnames=[
+                    "end_user",
+                    "hashed_api_key",
+                    "api_key_alias",
+                    "model",
+                    "team",
+                    "team_alias",
+                    "user",
+                ],
+            )
+
+            self.litellm_requests_metric = Counter(
+                name="litellm_requests_metric",
+                documentation="deprecated - use litellm_proxy_total_requests_metric. Total number of LLM calls to litellm - track total per API Key, team, user",
+                labelnames=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_requests_metric"
+                ),
+            )
+            self._initialize_prometheus_startup_metrics()
+
+        except Exception as e:
+            print_verbose(f"Got exception on init prometheus client {str(e)}")
+            raise e
+
+    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
+        # Define prometheus client
+        from litellm.types.utils import StandardLoggingPayload
+
+        verbose_logger.debug(
+            f"prometheus Logging - Enters success logging function for kwargs {kwargs}"
+        )
+
+        # unpack kwargs
+        standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
+            "standard_logging_object"
+        )
+
+        if standard_logging_payload is None or not isinstance(
+            standard_logging_payload, dict
+        ):
+            raise ValueError(
+                f"standard_logging_object is required, got={standard_logging_payload}"
+            )
+
+        model = kwargs.get("model", "")
+        litellm_params = kwargs.get("litellm_params", {}) or {}
+        _metadata = litellm_params.get("metadata", {})
+        end_user_id = get_end_user_id_for_cost_tracking(
+            litellm_params, service_type="prometheus"
+        )
+        user_id = standard_logging_payload["metadata"]["user_api_key_user_id"]
+        user_api_key = standard_logging_payload["metadata"]["user_api_key_hash"]
+        user_api_key_alias = standard_logging_payload["metadata"]["user_api_key_alias"]
+        user_api_team = standard_logging_payload["metadata"]["user_api_key_team_id"]
+        user_api_team_alias = standard_logging_payload["metadata"][
+            "user_api_key_team_alias"
+        ]
+        output_tokens = standard_logging_payload["completion_tokens"]
+        tokens_used = standard_logging_payload["total_tokens"]
+        response_cost = standard_logging_payload["response_cost"]
+        _requester_metadata = standard_logging_payload["metadata"].get(
+            "requester_metadata"
+        )
+        if standard_logging_payload is not None and isinstance(
+            standard_logging_payload, dict
+        ):
+            _tags = standard_logging_payload["request_tags"]
+        else:
+            _tags = []
+
+        print_verbose(
+            f"inside track_prometheus_metrics, model {model}, response_cost {response_cost}, tokens_used {tokens_used}, end_user_id {end_user_id}, user_api_key {user_api_key}"
+        )
+
+        enum_values = UserAPIKeyLabelValues(
+            end_user=end_user_id,
+            hashed_api_key=user_api_key,
+            api_key_alias=user_api_key_alias,
+            requested_model=standard_logging_payload["model_group"],
+            team=user_api_team,
+            team_alias=user_api_team_alias,
+            user=user_id,
+            user_email=standard_logging_payload["metadata"]["user_api_key_user_email"],
+            status_code="200",
+            model=model,
+            litellm_model_name=model,
+            tags=_tags,
+            model_id=standard_logging_payload["model_id"],
+            api_base=standard_logging_payload["api_base"],
+            api_provider=standard_logging_payload["custom_llm_provider"],
+            exception_status=None,
+            exception_class=None,
+            custom_metadata_labels=get_custom_labels_from_metadata(
+                metadata=standard_logging_payload["metadata"].get("requester_metadata")
+                or {}
+            ),
+        )
+
+        if (
+            user_api_key is not None
+            and isinstance(user_api_key, str)
+            and user_api_key.startswith("sk-")
+        ):
+            from litellm.proxy.utils import hash_token
+
+            user_api_key = hash_token(user_api_key)
+
+        # increment total LLM requests and spend metric
+        self._increment_top_level_request_and_spend_metrics(
+            end_user_id=end_user_id,
+            user_api_key=user_api_key,
+            user_api_key_alias=user_api_key_alias,
+            model=model,
+            user_api_team=user_api_team,
+            user_api_team_alias=user_api_team_alias,
+            user_id=user_id,
+            response_cost=response_cost,
+            enum_values=enum_values,
+        )
+
+        # input, output, total token metrics
+        self._increment_token_metrics(
+            # why type ignore below?
+            # 1. We just checked if isinstance(standard_logging_payload, dict). Pyright complains.
+            # 2. Pyright does not allow us to run isinstance(standard_logging_payload, StandardLoggingPayload) <- this would be ideal
+            standard_logging_payload=standard_logging_payload,  # type: ignore
+            end_user_id=end_user_id,
+            user_api_key=user_api_key,
+            user_api_key_alias=user_api_key_alias,
+            model=model,
+            user_api_team=user_api_team,
+            user_api_team_alias=user_api_team_alias,
+            user_id=user_id,
+            enum_values=enum_values,
+        )
+
+        # remaining budget metrics
+        await self._increment_remaining_budget_metrics(
+            user_api_team=user_api_team,
+            user_api_team_alias=user_api_team_alias,
+            user_api_key=user_api_key,
+            user_api_key_alias=user_api_key_alias,
+            litellm_params=litellm_params,
+            response_cost=response_cost,
+        )
+
+        # set proxy virtual key rpm/tpm metrics
+        self._set_virtual_key_rate_limit_metrics(
+            user_api_key=user_api_key,
+            user_api_key_alias=user_api_key_alias,
+            kwargs=kwargs,
+            metadata=_metadata,
+        )
+
+        # set latency metrics
+        self._set_latency_metrics(
+            kwargs=kwargs,
+            model=model,
+            user_api_key=user_api_key,
+            user_api_key_alias=user_api_key_alias,
+            user_api_team=user_api_team,
+            user_api_team_alias=user_api_team_alias,
+            # why type ignore below?
+            # 1. We just checked if isinstance(standard_logging_payload, dict). Pyright complains.
+            # 2. Pyright does not allow us to run isinstance(standard_logging_payload, StandardLoggingPayload) <- this would be ideal
+            enum_values=enum_values,
+        )
+
+        # set x-ratelimit headers
+        self.set_llm_deployment_success_metrics(
+            kwargs, start_time, end_time, enum_values, output_tokens
+        )
+
+        if (
+            standard_logging_payload["stream"] is True
+        ):  # log successful streaming requests from logging event hook.
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_proxy_total_requests_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_proxy_total_requests_metric.labels(**_labels).inc()
+
+    def _increment_token_metrics(
+        self,
+        standard_logging_payload: StandardLoggingPayload,
+        end_user_id: Optional[str],
+        user_api_key: Optional[str],
+        user_api_key_alias: Optional[str],
+        model: Optional[str],
+        user_api_team: Optional[str],
+        user_api_team_alias: Optional[str],
+        user_id: Optional[str],
+        enum_values: UserAPIKeyLabelValues,
+    ):
+        # token metrics
+        self.litellm_tokens_metric.labels(
+            end_user_id,
+            user_api_key,
+            user_api_key_alias,
+            model,
+            user_api_team,
+            user_api_team_alias,
+            user_id,
+        ).inc(standard_logging_payload["total_tokens"])
+
+        if standard_logging_payload is not None and isinstance(
+            standard_logging_payload, dict
+        ):
+            _tags = standard_logging_payload["request_tags"]
+
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_input_tokens_metric"
+            ),
+            enum_values=enum_values,
+        )
+        self.litellm_input_tokens_metric.labels(**_labels).inc(
+            standard_logging_payload["prompt_tokens"]
+        )
+
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_output_tokens_metric"
+            ),
+            enum_values=enum_values,
+        )
+
+        self.litellm_output_tokens_metric.labels(**_labels).inc(
+            standard_logging_payload["completion_tokens"]
+        )
+
+    async def _increment_remaining_budget_metrics(
+        self,
+        user_api_team: Optional[str],
+        user_api_team_alias: Optional[str],
+        user_api_key: Optional[str],
+        user_api_key_alias: Optional[str],
+        litellm_params: dict,
+        response_cost: float,
+    ):
+        _team_spend = litellm_params.get("metadata", {}).get(
+            "user_api_key_team_spend", None
+        )
+        _team_max_budget = litellm_params.get("metadata", {}).get(
+            "user_api_key_team_max_budget", None
+        )
+
+        _api_key_spend = litellm_params.get("metadata", {}).get(
+            "user_api_key_spend", None
+        )
+        _api_key_max_budget = litellm_params.get("metadata", {}).get(
+            "user_api_key_max_budget", None
+        )
+        await self._set_api_key_budget_metrics_after_api_request(
+            user_api_key=user_api_key,
+            user_api_key_alias=user_api_key_alias,
+            response_cost=response_cost,
+            key_max_budget=_api_key_max_budget,
+            key_spend=_api_key_spend,
+        )
+
+        await self._set_team_budget_metrics_after_api_request(
+            user_api_team=user_api_team,
+            user_api_team_alias=user_api_team_alias,
+            team_spend=_team_spend,
+            team_max_budget=_team_max_budget,
+            response_cost=response_cost,
+        )
+
+    def _increment_top_level_request_and_spend_metrics(
+        self,
+        end_user_id: Optional[str],
+        user_api_key: Optional[str],
+        user_api_key_alias: Optional[str],
+        model: Optional[str],
+        user_api_team: Optional[str],
+        user_api_team_alias: Optional[str],
+        user_id: Optional[str],
+        response_cost: float,
+        enum_values: UserAPIKeyLabelValues,
+    ):
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_requests_metric"
+            ),
+            enum_values=enum_values,
+        )
+        self.litellm_requests_metric.labels(**_labels).inc()
+
+        self.litellm_spend_metric.labels(
+            end_user_id,
+            user_api_key,
+            user_api_key_alias,
+            model,
+            user_api_team,
+            user_api_team_alias,
+            user_id,
+        ).inc(response_cost)
+
+    def _set_virtual_key_rate_limit_metrics(
+        self,
+        user_api_key: Optional[str],
+        user_api_key_alias: Optional[str],
+        kwargs: dict,
+        metadata: dict,
+    ):
+        from litellm.proxy.common_utils.callback_utils import (
+            get_model_group_from_litellm_kwargs,
+        )
+
+        # Set remaining rpm/tpm for API Key + model
+        # see parallel_request_limiter.py - variables are set there
+        model_group = get_model_group_from_litellm_kwargs(kwargs)
+        remaining_requests_variable_name = (
+            f"litellm-key-remaining-requests-{model_group}"
+        )
+        remaining_tokens_variable_name = f"litellm-key-remaining-tokens-{model_group}"
+
+        remaining_requests = (
+            metadata.get(remaining_requests_variable_name, sys.maxsize) or sys.maxsize
+        )
+        remaining_tokens = (
+            metadata.get(remaining_tokens_variable_name, sys.maxsize) or sys.maxsize
+        )
+
+        self.litellm_remaining_api_key_requests_for_model.labels(
+            user_api_key, user_api_key_alias, model_group
+        ).set(remaining_requests)
+
+        self.litellm_remaining_api_key_tokens_for_model.labels(
+            user_api_key, user_api_key_alias, model_group
+        ).set(remaining_tokens)
+
+    def _set_latency_metrics(
+        self,
+        kwargs: dict,
+        model: Optional[str],
+        user_api_key: Optional[str],
+        user_api_key_alias: Optional[str],
+        user_api_team: Optional[str],
+        user_api_team_alias: Optional[str],
+        enum_values: UserAPIKeyLabelValues,
+    ):
+        # latency metrics
+        end_time: datetime = kwargs.get("end_time") or datetime.now()
+        start_time: Optional[datetime] = kwargs.get("start_time")
+        api_call_start_time = kwargs.get("api_call_start_time", None)
+        completion_start_time = kwargs.get("completion_start_time", None)
+        time_to_first_token_seconds = self._safe_duration_seconds(
+            start_time=api_call_start_time,
+            end_time=completion_start_time,
+        )
+        if (
+            time_to_first_token_seconds is not None
+            and kwargs.get("stream", False) is True  # only emit for streaming requests
+        ):
+            self.litellm_llm_api_time_to_first_token_metric.labels(
+                model,
+                user_api_key,
+                user_api_key_alias,
+                user_api_team,
+                user_api_team_alias,
+            ).observe(time_to_first_token_seconds)
+        else:
+            verbose_logger.debug(
+                "Time to first token metric not emitted, stream option in model_parameters is not True"
+            )
+
+        api_call_total_time_seconds = self._safe_duration_seconds(
+            start_time=api_call_start_time,
+            end_time=end_time,
+        )
+        if api_call_total_time_seconds is not None:
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_llm_api_latency_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_llm_api_latency_metric.labels(**_labels).observe(
+                api_call_total_time_seconds
+            )
+
+        # total request latency
+        total_time_seconds = self._safe_duration_seconds(
+            start_time=start_time,
+            end_time=end_time,
+        )
+        if total_time_seconds is not None:
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_request_total_latency_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_request_total_latency_metric.labels(**_labels).observe(
+                total_time_seconds
+            )
+
+    async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
+        from litellm.types.utils import StandardLoggingPayload
+
+        verbose_logger.debug(
+            f"prometheus Logging - Enters failure logging function for kwargs {kwargs}"
+        )
+
+        # unpack kwargs
+        model = kwargs.get("model", "")
+        standard_logging_payload: StandardLoggingPayload = kwargs.get(
+            "standard_logging_object", {}
+        )
+        litellm_params = kwargs.get("litellm_params", {}) or {}
+        end_user_id = get_end_user_id_for_cost_tracking(
+            litellm_params, service_type="prometheus"
+        )
+        user_id = standard_logging_payload["metadata"]["user_api_key_user_id"]
+        user_api_key = standard_logging_payload["metadata"]["user_api_key_hash"]
+        user_api_key_alias = standard_logging_payload["metadata"]["user_api_key_alias"]
+        user_api_team = standard_logging_payload["metadata"]["user_api_key_team_id"]
+        user_api_team_alias = standard_logging_payload["metadata"][
+            "user_api_key_team_alias"
+        ]
+        kwargs.get("exception", None)
+
+        try:
+            self.litellm_llm_api_failed_requests_metric.labels(
+                end_user_id,
+                user_api_key,
+                user_api_key_alias,
+                model,
+                user_api_team,
+                user_api_team_alias,
+                user_id,
+            ).inc()
+            self.set_llm_deployment_failure_metrics(kwargs)
+        except Exception as e:
+            verbose_logger.exception(
+                "prometheus Layer Error(): Exception occured - {}".format(str(e))
+            )
+            pass
+        pass
+
+    async def async_post_call_failure_hook(
+        self,
+        request_data: dict,
+        original_exception: Exception,
+        user_api_key_dict: UserAPIKeyAuth,
+    ):
+        """
+        Track client side failures
+
+        Proxy level tracking - failed client side requests
+
+        labelnames=[
+                    "end_user",
+                    "hashed_api_key",
+                    "api_key_alias",
+                    REQUESTED_MODEL,
+                    "team",
+                    "team_alias",
+                ] + EXCEPTION_LABELS,
+        """
+        try:
+            _tags = cast(List[str], request_data.get("tags") or [])
+            enum_values = UserAPIKeyLabelValues(
+                end_user=user_api_key_dict.end_user_id,
+                user=user_api_key_dict.user_id,
+                user_email=user_api_key_dict.user_email,
+                hashed_api_key=user_api_key_dict.api_key,
+                api_key_alias=user_api_key_dict.key_alias,
+                team=user_api_key_dict.team_id,
+                team_alias=user_api_key_dict.team_alias,
+                requested_model=request_data.get("model", ""),
+                status_code=str(getattr(original_exception, "status_code", None)),
+                exception_status=str(getattr(original_exception, "status_code", None)),
+                exception_class=str(original_exception.__class__.__name__),
+                tags=_tags,
+            )
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_proxy_failed_requests_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_proxy_failed_requests_metric.labels(**_labels).inc()
+
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_proxy_total_requests_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_proxy_total_requests_metric.labels(**_labels).inc()
+
+        except Exception as e:
+            verbose_logger.exception(
+                "prometheus Layer Error(): Exception occured - {}".format(str(e))
+            )
+            pass
+
+    async def async_post_call_success_hook(
+        self, data: dict, user_api_key_dict: UserAPIKeyAuth, response
+    ):
+        """
+        Proxy level tracking - triggered when the proxy responds with a success response to the client
+        """
+        try:
+            enum_values = UserAPIKeyLabelValues(
+                end_user=user_api_key_dict.end_user_id,
+                hashed_api_key=user_api_key_dict.api_key,
+                api_key_alias=user_api_key_dict.key_alias,
+                requested_model=data.get("model", ""),
+                team=user_api_key_dict.team_id,
+                team_alias=user_api_key_dict.team_alias,
+                user=user_api_key_dict.user_id,
+                user_email=user_api_key_dict.user_email,
+                status_code="200",
+            )
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_proxy_total_requests_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_proxy_total_requests_metric.labels(**_labels).inc()
+
+        except Exception as e:
+            verbose_logger.exception(
+                "prometheus Layer Error(): Exception occured - {}".format(str(e))
+            )
+            pass
+
+    def set_llm_deployment_failure_metrics(self, request_kwargs: dict):
+        """
+        Sets Failure metrics when an LLM API call fails
+
+        - mark the deployment as partial outage
+        - increment deployment failure responses metric
+        - increment deployment total requests metric
+
+        Args:
+            request_kwargs: dict
+
+        """
+        try:
+            verbose_logger.debug("setting remaining tokens requests metric")
+            standard_logging_payload: StandardLoggingPayload = request_kwargs.get(
+                "standard_logging_object", {}
+            )
+            _litellm_params = request_kwargs.get("litellm_params", {}) or {}
+            litellm_model_name = request_kwargs.get("model", None)
+            model_group = standard_logging_payload.get("model_group", None)
+            api_base = standard_logging_payload.get("api_base", None)
+            model_id = standard_logging_payload.get("model_id", None)
+            exception: Exception = request_kwargs.get("exception", None)
+
+            llm_provider = _litellm_params.get("custom_llm_provider", None)
+
+            """
+            log these labels
+            ["litellm_model_name", "model_id", "api_base", "api_provider"]
+            """
+            self.set_deployment_partial_outage(
+                litellm_model_name=litellm_model_name,
+                model_id=model_id,
+                api_base=api_base,
+                api_provider=llm_provider,
+            )
+            self.litellm_deployment_failure_responses.labels(
+                litellm_model_name=litellm_model_name,
+                model_id=model_id,
+                api_base=api_base,
+                api_provider=llm_provider,
+                exception_status=str(getattr(exception, "status_code", None)),
+                exception_class=exception.__class__.__name__,
+                requested_model=model_group,
+                hashed_api_key=standard_logging_payload["metadata"][
+                    "user_api_key_hash"
+                ],
+                api_key_alias=standard_logging_payload["metadata"][
+                    "user_api_key_alias"
+                ],
+                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
+                team_alias=standard_logging_payload["metadata"][
+                    "user_api_key_team_alias"
+                ],
+            ).inc()
+
+            # tag based tracking
+            if standard_logging_payload is not None and isinstance(
+                standard_logging_payload, dict
+            ):
+                _tags = standard_logging_payload["request_tags"]
+                for tag in _tags:
+                    self.litellm_deployment_failure_by_tag_responses.labels(
+                        **{
+                            UserAPIKeyLabelNames.REQUESTED_MODEL.value: model_group,
+                            UserAPIKeyLabelNames.TAG.value: tag,
+                            UserAPIKeyLabelNames.v2_LITELLM_MODEL_NAME.value: litellm_model_name,
+                            UserAPIKeyLabelNames.MODEL_ID.value: model_id,
+                            UserAPIKeyLabelNames.API_BASE.value: api_base,
+                            UserAPIKeyLabelNames.API_PROVIDER.value: llm_provider,
+                            UserAPIKeyLabelNames.EXCEPTION_CLASS.value: exception.__class__.__name__,
+                            UserAPIKeyLabelNames.EXCEPTION_STATUS.value: str(
+                                getattr(exception, "status_code", None)
+                            ),
+                        }
+                    ).inc()
+
+            self.litellm_deployment_total_requests.labels(
+                litellm_model_name=litellm_model_name,
+                model_id=model_id,
+                api_base=api_base,
+                api_provider=llm_provider,
+                requested_model=model_group,
+                hashed_api_key=standard_logging_payload["metadata"][
+                    "user_api_key_hash"
+                ],
+                api_key_alias=standard_logging_payload["metadata"][
+                    "user_api_key_alias"
+                ],
+                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
+                team_alias=standard_logging_payload["metadata"][
+                    "user_api_key_team_alias"
+                ],
+            ).inc()
+
+            pass
+        except Exception as e:
+            verbose_logger.debug(
+                "Prometheus Error: set_llm_deployment_failure_metrics. Exception occured - {}".format(
+                    str(e)
+                )
+            )
+
+    def set_llm_deployment_success_metrics(
+        self,
+        request_kwargs: dict,
+        start_time,
+        end_time,
+        enum_values: UserAPIKeyLabelValues,
+        output_tokens: float = 1.0,
+    ):
+        try:
+            verbose_logger.debug("setting remaining tokens requests metric")
+            standard_logging_payload: Optional[StandardLoggingPayload] = (
+                request_kwargs.get("standard_logging_object")
+            )
+
+            if standard_logging_payload is None:
+                return
+
+            model_group = standard_logging_payload["model_group"]
+            api_base = standard_logging_payload["api_base"]
+            _response_headers = request_kwargs.get("response_headers")
+            _litellm_params = request_kwargs.get("litellm_params", {}) or {}
+            _metadata = _litellm_params.get("metadata", {})
+            litellm_model_name = request_kwargs.get("model", None)
+            llm_provider = _litellm_params.get("custom_llm_provider", None)
+            _model_info = _metadata.get("model_info") or {}
+            model_id = _model_info.get("id", None)
+
+            remaining_requests: Optional[int] = None
+            remaining_tokens: Optional[int] = None
+            if additional_headers := standard_logging_payload["hidden_params"][
+                "additional_headers"
+            ]:
+                # OpenAI / OpenAI Compatible headers
+                remaining_requests = additional_headers.get(
+                    "x_ratelimit_remaining_requests", None
+                )
+                remaining_tokens = additional_headers.get(
+                    "x_ratelimit_remaining_tokens", None
+                )
+
+            if litellm_overhead_time_ms := standard_logging_payload[
+                "hidden_params"
+            ].get("litellm_overhead_time_ms"):
+                self.litellm_overhead_latency_metric.labels(
+                    model_group,
+                    llm_provider,
+                    api_base,
+                    litellm_model_name,
+                    standard_logging_payload["metadata"]["user_api_key_hash"],
+                    standard_logging_payload["metadata"]["user_api_key_alias"],
+                ).observe(
+                    litellm_overhead_time_ms / 1000
+                )  # set as seconds
+
+            if remaining_requests:
+                """
+                "model_group",
+                "api_provider",
+                "api_base",
+                "litellm_model_name"
+                """
+                self.litellm_remaining_requests_metric.labels(
+                    model_group,
+                    llm_provider,
+                    api_base,
+                    litellm_model_name,
+                    standard_logging_payload["metadata"]["user_api_key_hash"],
+                    standard_logging_payload["metadata"]["user_api_key_alias"],
+                ).set(remaining_requests)
+
+            if remaining_tokens:
+                self.litellm_remaining_tokens_metric.labels(
+                    model_group,
+                    llm_provider,
+                    api_base,
+                    litellm_model_name,
+                    standard_logging_payload["metadata"]["user_api_key_hash"],
+                    standard_logging_payload["metadata"]["user_api_key_alias"],
+                ).set(remaining_tokens)
+
+            """
+            log these labels
+            ["litellm_model_name", "requested_model", model_id", "api_base", "api_provider"]
+            """
+            self.set_deployment_healthy(
+                litellm_model_name=litellm_model_name,
+                model_id=model_id,
+                api_base=api_base,
+                api_provider=llm_provider,
+            )
+
+            self.litellm_deployment_success_responses.labels(
+                litellm_model_name=litellm_model_name,
+                model_id=model_id,
+                api_base=api_base,
+                api_provider=llm_provider,
+                requested_model=model_group,
+                hashed_api_key=standard_logging_payload["metadata"][
+                    "user_api_key_hash"
+                ],
+                api_key_alias=standard_logging_payload["metadata"][
+                    "user_api_key_alias"
+                ],
+                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
+                team_alias=standard_logging_payload["metadata"][
+                    "user_api_key_team_alias"
+                ],
+            ).inc()
+
+            self.litellm_deployment_total_requests.labels(
+                litellm_model_name=litellm_model_name,
+                model_id=model_id,
+                api_base=api_base,
+                api_provider=llm_provider,
+                requested_model=model_group,
+                hashed_api_key=standard_logging_payload["metadata"][
+                    "user_api_key_hash"
+                ],
+                api_key_alias=standard_logging_payload["metadata"][
+                    "user_api_key_alias"
+                ],
+                team=standard_logging_payload["metadata"]["user_api_key_team_id"],
+                team_alias=standard_logging_payload["metadata"][
+                    "user_api_key_team_alias"
+                ],
+            ).inc()
+
+            # Track deployment Latency
+            response_ms: timedelta = end_time - start_time
+            time_to_first_token_response_time: Optional[timedelta] = None
+
+            if (
+                request_kwargs.get("stream", None) is not None
+                and request_kwargs["stream"] is True
+            ):
+                # only log ttft for streaming request
+                time_to_first_token_response_time = (
+                    request_kwargs.get("completion_start_time", end_time) - start_time
+                )
+
+            # use the metric that is not None
+            # if streaming - use time_to_first_token_response
+            # if not streaming - use response_ms
+            _latency: timedelta = time_to_first_token_response_time or response_ms
+            _latency_seconds = _latency.total_seconds()
+
+            # latency per output token
+            latency_per_token = None
+            if output_tokens is not None and output_tokens > 0:
+                latency_per_token = _latency_seconds / output_tokens
+                _labels = prometheus_label_factory(
+                    supported_enum_labels=PrometheusMetricLabels.get_labels(
+                        label_name="litellm_deployment_latency_per_output_token"
+                    ),
+                    enum_values=enum_values,
+                )
+                self.litellm_deployment_latency_per_output_token.labels(
+                    **_labels
+                ).observe(latency_per_token)
+
+        except Exception as e:
+            verbose_logger.error(
+                "Prometheus Error: set_llm_deployment_success_metrics. Exception occured - {}".format(
+                    str(e)
+                )
+            )
+            return
+
+    async def log_success_fallback_event(
+        self, original_model_group: str, kwargs: dict, original_exception: Exception
+    ):
+        """
+
+        Logs a successful LLM fallback event on prometheus
+
+        """
+        from litellm.litellm_core_utils.litellm_logging import (
+            StandardLoggingMetadata,
+            StandardLoggingPayloadSetup,
+        )
+
+        verbose_logger.debug(
+            "Prometheus: log_success_fallback_event, original_model_group: %s, kwargs: %s",
+            original_model_group,
+            kwargs,
+        )
+        _metadata = kwargs.get("metadata", {})
+        standard_metadata: StandardLoggingMetadata = (
+            StandardLoggingPayloadSetup.get_standard_logging_metadata(
+                metadata=_metadata
+            )
+        )
+        _new_model = kwargs.get("model")
+        _tags = cast(List[str], kwargs.get("tags") or [])
+
+        enum_values = UserAPIKeyLabelValues(
+            requested_model=original_model_group,
+            fallback_model=_new_model,
+            hashed_api_key=standard_metadata["user_api_key_hash"],
+            api_key_alias=standard_metadata["user_api_key_alias"],
+            team=standard_metadata["user_api_key_team_id"],
+            team_alias=standard_metadata["user_api_key_team_alias"],
+            exception_status=str(getattr(original_exception, "status_code", None)),
+            exception_class=str(original_exception.__class__.__name__),
+            tags=_tags,
+        )
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_deployment_successful_fallbacks"
+            ),
+            enum_values=enum_values,
+        )
+        self.litellm_deployment_successful_fallbacks.labels(**_labels).inc()
+
+    async def log_failure_fallback_event(
+        self, original_model_group: str, kwargs: dict, original_exception: Exception
+    ):
+        """
+        Logs a failed LLM fallback event on prometheus
+        """
+        from litellm.litellm_core_utils.litellm_logging import (
+            StandardLoggingMetadata,
+            StandardLoggingPayloadSetup,
+        )
+
+        verbose_logger.debug(
+            "Prometheus: log_failure_fallback_event, original_model_group: %s, kwargs: %s",
+            original_model_group,
+            kwargs,
+        )
+        _new_model = kwargs.get("model")
+        _metadata = kwargs.get("metadata", {})
+        _tags = cast(List[str], kwargs.get("tags") or [])
+        standard_metadata: StandardLoggingMetadata = (
+            StandardLoggingPayloadSetup.get_standard_logging_metadata(
+                metadata=_metadata
+            )
+        )
+
+        enum_values = UserAPIKeyLabelValues(
+            requested_model=original_model_group,
+            fallback_model=_new_model,
+            hashed_api_key=standard_metadata["user_api_key_hash"],
+            api_key_alias=standard_metadata["user_api_key_alias"],
+            team=standard_metadata["user_api_key_team_id"],
+            team_alias=standard_metadata["user_api_key_team_alias"],
+            exception_status=str(getattr(original_exception, "status_code", None)),
+            exception_class=str(original_exception.__class__.__name__),
+            tags=_tags,
+        )
+
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_deployment_failed_fallbacks"
+            ),
+            enum_values=enum_values,
+        )
+        self.litellm_deployment_failed_fallbacks.labels(**_labels).inc()
+
+    def set_litellm_deployment_state(
+        self,
+        state: int,
+        litellm_model_name: str,
+        model_id: Optional[str],
+        api_base: Optional[str],
+        api_provider: str,
+    ):
+        self.litellm_deployment_state.labels(
+            litellm_model_name, model_id, api_base, api_provider
+        ).set(state)
+
+    def set_deployment_healthy(
+        self,
+        litellm_model_name: str,
+        model_id: str,
+        api_base: str,
+        api_provider: str,
+    ):
+        self.set_litellm_deployment_state(
+            0, litellm_model_name, model_id, api_base, api_provider
+        )
+
+    def set_deployment_partial_outage(
+        self,
+        litellm_model_name: str,
+        model_id: Optional[str],
+        api_base: Optional[str],
+        api_provider: str,
+    ):
+        self.set_litellm_deployment_state(
+            1, litellm_model_name, model_id, api_base, api_provider
+        )
+
+    def set_deployment_complete_outage(
+        self,
+        litellm_model_name: str,
+        model_id: Optional[str],
+        api_base: Optional[str],
+        api_provider: str,
+    ):
+        self.set_litellm_deployment_state(
+            2, litellm_model_name, model_id, api_base, api_provider
+        )
+
+    def increment_deployment_cooled_down(
+        self,
+        litellm_model_name: str,
+        model_id: str,
+        api_base: str,
+        api_provider: str,
+        exception_status: str,
+    ):
+        """
+        increment metric when litellm.Router / load balancing logic places a deployment in cool down
+        """
+        self.litellm_deployment_cooled_down.labels(
+            litellm_model_name, model_id, api_base, api_provider, exception_status
+        ).inc()
+
+    def track_provider_remaining_budget(
+        self, provider: str, spend: float, budget_limit: float
+    ):
+        """
+        Track provider remaining budget in Prometheus
+        """
+        self.litellm_provider_remaining_budget_metric.labels(provider).set(
+            self._safe_get_remaining_budget(
+                max_budget=budget_limit,
+                spend=spend,
+            )
+        )
+
+    def _safe_get_remaining_budget(
+        self, max_budget: Optional[float], spend: Optional[float]
+    ) -> float:
+        if max_budget is None:
+            return float("inf")
+
+        if spend is None:
+            return max_budget
+
+        return max_budget - spend
+
+    def _initialize_prometheus_startup_metrics(self):
+        """
+        Initialize prometheus startup metrics
+
+        Helper to create tasks for initializing metrics that are required on startup - eg. remaining budget metrics
+        """
+        if litellm.prometheus_initialize_budget_metrics is not True:
+            verbose_logger.debug("Prometheus: skipping budget metrics initialization")
+            return
+
+        try:
+            if asyncio.get_running_loop():
+                asyncio.create_task(self._initialize_remaining_budget_metrics())
+        except RuntimeError as e:  # no running event loop
+            verbose_logger.exception(
+                f"No running event loop - skipping budget metrics initialization: {str(e)}"
+            )
+
+    async def _initialize_budget_metrics(
+        self,
+        data_fetch_function: Callable[..., Awaitable[Tuple[List[Any], Optional[int]]]],
+        set_metrics_function: Callable[[List[Any]], Awaitable[None]],
+        data_type: Literal["teams", "keys"],
+    ):
+        """
+        Generic method to initialize budget metrics for teams or API keys.
+
+        Args:
+            data_fetch_function: Function to fetch data with pagination.
+            set_metrics_function: Function to set metrics for the fetched data.
+            data_type: String representing the type of data ("teams" or "keys") for logging purposes.
+        """
+        from litellm.proxy.proxy_server import prisma_client
+
+        if prisma_client is None:
+            return
+
+        try:
+            page = 1
+            page_size = 50
+            data, total_count = await data_fetch_function(
+                page_size=page_size, page=page
+            )
+
+            if total_count is None:
+                total_count = len(data)
+
+            # Calculate total pages needed
+            total_pages = (total_count + page_size - 1) // page_size
+
+            # Set metrics for first page of data
+            await set_metrics_function(data)
+
+            # Get and set metrics for remaining pages
+            for page in range(2, total_pages + 1):
+                data, _ = await data_fetch_function(page_size=page_size, page=page)
+                await set_metrics_function(data)
+
+        except Exception as e:
+            verbose_logger.exception(
+                f"Error initializing {data_type} budget metrics: {str(e)}"
+            )
+
+    async def _initialize_team_budget_metrics(self):
+        """
+        Initialize team budget metrics by reusing the generic pagination logic.
+        """
+        from litellm.proxy.management_endpoints.team_endpoints import (
+            get_paginated_teams,
+        )
+        from litellm.proxy.proxy_server import prisma_client
+
+        if prisma_client is None:
+            verbose_logger.debug(
+                "Prometheus: skipping team metrics initialization, DB not initialized"
+            )
+            return
+
+        async def fetch_teams(
+            page_size: int, page: int
+        ) -> Tuple[List[LiteLLM_TeamTable], Optional[int]]:
+            teams, total_count = await get_paginated_teams(
+                prisma_client=prisma_client, page_size=page_size, page=page
+            )
+            if total_count is None:
+                total_count = len(teams)
+            return teams, total_count
+
+        await self._initialize_budget_metrics(
+            data_fetch_function=fetch_teams,
+            set_metrics_function=self._set_team_list_budget_metrics,
+            data_type="teams",
+        )
+
+    async def _initialize_api_key_budget_metrics(self):
+        """
+        Initialize API key budget metrics by reusing the generic pagination logic.
+        """
+        from typing import Union
+
+        from litellm.constants import UI_SESSION_TOKEN_TEAM_ID
+        from litellm.proxy.management_endpoints.key_management_endpoints import (
+            _list_key_helper,
+        )
+        from litellm.proxy.proxy_server import prisma_client
+
+        if prisma_client is None:
+            verbose_logger.debug(
+                "Prometheus: skipping key metrics initialization, DB not initialized"
+            )
+            return
+
+        async def fetch_keys(
+            page_size: int, page: int
+        ) -> Tuple[List[Union[str, UserAPIKeyAuth]], Optional[int]]:
+            key_list_response = await _list_key_helper(
+                prisma_client=prisma_client,
+                page=page,
+                size=page_size,
+                user_id=None,
+                team_id=None,
+                key_alias=None,
+                exclude_team_id=UI_SESSION_TOKEN_TEAM_ID,
+                return_full_object=True,
+                organization_id=None,
+            )
+            keys = key_list_response.get("keys", [])
+            total_count = key_list_response.get("total_count")
+            if total_count is None:
+                total_count = len(keys)
+            return keys, total_count
+
+        await self._initialize_budget_metrics(
+            data_fetch_function=fetch_keys,
+            set_metrics_function=self._set_key_list_budget_metrics,
+            data_type="keys",
+        )
+
+    async def _initialize_remaining_budget_metrics(self):
+        """
+        Initialize remaining budget metrics for all teams to avoid metric discrepancies.
+
+        Runs when prometheus logger starts up.
+        """
+        await self._initialize_team_budget_metrics()
+        await self._initialize_api_key_budget_metrics()
+
+    async def _set_key_list_budget_metrics(
+        self, keys: List[Union[str, UserAPIKeyAuth]]
+    ):
+        """Helper function to set budget metrics for a list of keys"""
+        for key in keys:
+            if isinstance(key, UserAPIKeyAuth):
+                self._set_key_budget_metrics(key)
+
+    async def _set_team_list_budget_metrics(self, teams: List[LiteLLM_TeamTable]):
+        """Helper function to set budget metrics for a list of teams"""
+        for team in teams:
+            self._set_team_budget_metrics(team)
+
+    async def _set_team_budget_metrics_after_api_request(
+        self,
+        user_api_team: Optional[str],
+        user_api_team_alias: Optional[str],
+        team_spend: float,
+        team_max_budget: float,
+        response_cost: float,
+    ):
+        """
+        Set team budget metrics after an LLM API request
+
+        - Assemble a LiteLLM_TeamTable object
+            - looks up team info from db if not available in metadata
+        - Set team budget metrics
+        """
+        if user_api_team:
+            team_object = await self._assemble_team_object(
+                team_id=user_api_team,
+                team_alias=user_api_team_alias or "",
+                spend=team_spend,
+                max_budget=team_max_budget,
+                response_cost=response_cost,
+            )
+
+            self._set_team_budget_metrics(team_object)
+
+    async def _assemble_team_object(
+        self,
+        team_id: str,
+        team_alias: str,
+        spend: Optional[float],
+        max_budget: Optional[float],
+        response_cost: float,
+    ) -> LiteLLM_TeamTable:
+        """
+        Assemble a LiteLLM_TeamTable object
+
+        for fields not available in metadata, we fetch from db
+        Fields not available in metadata:
+        - `budget_reset_at`
+        """
+        from litellm.proxy.auth.auth_checks import get_team_object
+        from litellm.proxy.proxy_server import prisma_client, user_api_key_cache
+
+        _total_team_spend = (spend or 0) + response_cost
+        team_object = LiteLLM_TeamTable(
+            team_id=team_id,
+            team_alias=team_alias,
+            spend=_total_team_spend,
+            max_budget=max_budget,
+        )
+        try:
+            team_info = await get_team_object(
+                team_id=team_id,
+                prisma_client=prisma_client,
+                user_api_key_cache=user_api_key_cache,
+            )
+        except Exception as e:
+            verbose_logger.debug(
+                f"[Non-Blocking] Prometheus: Error getting team info: {str(e)}"
+            )
+            return team_object
+
+        if team_info:
+            team_object.budget_reset_at = team_info.budget_reset_at
+
+        return team_object
+
+    def _set_team_budget_metrics(
+        self,
+        team: LiteLLM_TeamTable,
+    ):
+        """
+        Set team budget metrics for a single team
+
+        - Remaining Budget
+        - Max Budget
+        - Budget Reset At
+        """
+        enum_values = UserAPIKeyLabelValues(
+            team=team.team_id,
+            team_alias=team.team_alias or "",
+        )
+
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_remaining_team_budget_metric"
+            ),
+            enum_values=enum_values,
+        )
+        self.litellm_remaining_team_budget_metric.labels(**_labels).set(
+            self._safe_get_remaining_budget(
+                max_budget=team.max_budget,
+                spend=team.spend,
+            )
+        )
+
+        if team.max_budget is not None:
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_team_max_budget_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_team_max_budget_metric.labels(**_labels).set(team.max_budget)
+
+        if team.budget_reset_at is not None:
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_team_budget_remaining_hours_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_team_budget_remaining_hours_metric.labels(**_labels).set(
+                self._get_remaining_hours_for_budget_reset(
+                    budget_reset_at=team.budget_reset_at
+                )
+            )
+
+    def _set_key_budget_metrics(self, user_api_key_dict: UserAPIKeyAuth):
+        """
+        Set virtual key budget metrics
+
+        - Remaining Budget
+        - Max Budget
+        - Budget Reset At
+        """
+        enum_values = UserAPIKeyLabelValues(
+            hashed_api_key=user_api_key_dict.token,
+            api_key_alias=user_api_key_dict.key_alias or "",
+        )
+        _labels = prometheus_label_factory(
+            supported_enum_labels=PrometheusMetricLabels.get_labels(
+                label_name="litellm_remaining_api_key_budget_metric"
+            ),
+            enum_values=enum_values,
+        )
+        self.litellm_remaining_api_key_budget_metric.labels(**_labels).set(
+            self._safe_get_remaining_budget(
+                max_budget=user_api_key_dict.max_budget,
+                spend=user_api_key_dict.spend,
+            )
+        )
+
+        if user_api_key_dict.max_budget is not None:
+            _labels = prometheus_label_factory(
+                supported_enum_labels=PrometheusMetricLabels.get_labels(
+                    label_name="litellm_api_key_max_budget_metric"
+                ),
+                enum_values=enum_values,
+            )
+            self.litellm_api_key_max_budget_metric.labels(**_labels).set(
+                user_api_key_dict.max_budget
+            )
+
+        if user_api_key_dict.budget_reset_at is not None:
+            self.litellm_api_key_budget_remaining_hours_metric.labels(**_labels).set(
+                self._get_remaining_hours_for_budget_reset(
+                    budget_reset_at=user_api_key_dict.budget_reset_at
+                )
+            )
+
+    async def _set_api_key_budget_metrics_after_api_request(
+        self,
+        user_api_key: Optional[str],
+        user_api_key_alias: Optional[str],
+        response_cost: float,
+        key_max_budget: float,
+        key_spend: Optional[float],
+    ):
+        if user_api_key:
+            user_api_key_dict = await self._assemble_key_object(
+                user_api_key=user_api_key,
+                user_api_key_alias=user_api_key_alias or "",
+                key_max_budget=key_max_budget,
+                key_spend=key_spend,
+                response_cost=response_cost,
+            )
+            self._set_key_budget_metrics(user_api_key_dict)
+
+    async def _assemble_key_object(
+        self,
+        user_api_key: str,
+        user_api_key_alias: str,
+        key_max_budget: float,
+        key_spend: Optional[float],
+        response_cost: float,
+    ) -> UserAPIKeyAuth:
+        """
+        Assemble a UserAPIKeyAuth object
+        """
+        from litellm.proxy.auth.auth_checks import get_key_object
+        from litellm.proxy.proxy_server import prisma_client, user_api_key_cache
+
+        _total_key_spend = (key_spend or 0) + response_cost
+        user_api_key_dict = UserAPIKeyAuth(
+            token=user_api_key,
+            key_alias=user_api_key_alias,
+            max_budget=key_max_budget,
+            spend=_total_key_spend,
+        )
+        try:
+            if user_api_key_dict.token:
+                key_object = await get_key_object(
+                    hashed_token=user_api_key_dict.token,
+                    prisma_client=prisma_client,
+                    user_api_key_cache=user_api_key_cache,
+                )
+                if key_object:
+                    user_api_key_dict.budget_reset_at = key_object.budget_reset_at
+        except Exception as e:
+            verbose_logger.debug(
+                f"[Non-Blocking] Prometheus: Error getting key info: {str(e)}"
+            )
+
+        return user_api_key_dict
+
+    def _get_remaining_hours_for_budget_reset(self, budget_reset_at: datetime) -> float:
+        """
+        Get remaining hours for budget reset
+        """
+        return (
+            budget_reset_at - datetime.now(budget_reset_at.tzinfo)
+        ).total_seconds() / 3600
+
+    def _safe_duration_seconds(
+        self,
+        start_time: Any,
+        end_time: Any,
+    ) -> Optional[float]:
+        """
+        Compute the duration in seconds between two objects.
+
+        Returns the duration as a float if both start and end are instances of datetime,
+        otherwise returns None.
+        """
+        if isinstance(start_time, datetime) and isinstance(end_time, datetime):
+            return (end_time - start_time).total_seconds()
+        return None
+
+
+def prometheus_label_factory(
+    supported_enum_labels: List[str],
+    enum_values: UserAPIKeyLabelValues,
+    tag: Optional[str] = None,
+) -> dict:
+    """
+    Returns a dictionary of label + values for prometheus.
+
+    Ensures end_user param is not sent to prometheus if it is not supported.
+    """
+    # Extract dictionary from Pydantic object
+    enum_dict = enum_values.model_dump()
+
+    # Filter supported labels
+    filtered_labels = {
+        label: value
+        for label, value in enum_dict.items()
+        if label in supported_enum_labels
+    }
+
+    if UserAPIKeyLabelNames.END_USER.value in filtered_labels:
+        filtered_labels["end_user"] = get_end_user_id_for_cost_tracking(
+            litellm_params={"user_api_key_end_user_id": enum_values.end_user},
+            service_type="prometheus",
+        )
+
+    if enum_values.custom_metadata_labels is not None:
+        for key, value in enum_values.custom_metadata_labels.items():
+            if key in supported_enum_labels:
+                filtered_labels[key] = value
+
+    for label in supported_enum_labels:
+        if label not in filtered_labels:
+            filtered_labels[label] = None
+
+    return filtered_labels
+
+
+def get_custom_labels_from_metadata(metadata: dict) -> Dict[str, str]:
+    """
+    Get custom labels from metadata
+    """
+    keys = litellm.custom_prometheus_metadata_labels
+    if keys is None or len(keys) == 0:
+        return {}
+
+    result: Dict[str, str] = {}
+
+    for key in keys:
+        # Split the dot notation key into parts
+        original_key = key
+        key = key.replace("metadata.", "", 1) if key.startswith("metadata.") else key
+
+        keys_parts = key.split(".")
+        # Traverse through the dictionary using the parts
+        value = metadata
+        for part in keys_parts:
+            value = value.get(part, None)  # Get the value, return None if not found
+            if value is None:
+                break
+
+        if value is not None and isinstance(value, str):
+            result[original_key.replace(".", "_")] = value
+
+    return result