aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/integrations/langfuse
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/integrations/langfuse')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse.py955
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_handler.py169
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_prompt_management.py287
3 files changed, 1411 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse.py b/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse.py
new file mode 100644
index 00000000..f990a316
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse.py
@@ -0,0 +1,955 @@
+#### What this does ####
+# On success, logs events to Langfuse
+import copy
+import os
+import traceback
+from datetime import datetime
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, cast
+
+from packaging.version import Version
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.litellm_core_utils.redact_messages import redact_user_api_key_info
+from litellm.llms.custom_httpx.http_handler import _get_httpx_client
+from litellm.secret_managers.main import str_to_bool
+from litellm.types.integrations.langfuse import *
+from litellm.types.llms.openai import HttpxBinaryResponseContent
+from litellm.types.utils import (
+ EmbeddingResponse,
+ ImageResponse,
+ ModelResponse,
+ RerankResponse,
+ StandardLoggingPayload,
+ StandardLoggingPromptManagementMetadata,
+ TextCompletionResponse,
+ TranscriptionResponse,
+)
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import DynamicLoggingCache
+else:
+ DynamicLoggingCache = Any
+
+
+class LangFuseLogger:
+ # Class variables or attributes
+ def __init__(
+ self,
+ langfuse_public_key=None,
+ langfuse_secret=None,
+ langfuse_host=None,
+ flush_interval=1,
+ ):
+ try:
+ import langfuse
+ from langfuse import Langfuse
+ except Exception as e:
+ raise Exception(
+ f"\033[91mLangfuse not installed, try running 'pip install langfuse' to fix this error: {e}\n{traceback.format_exc()}\033[0m"
+ )
+ # Instance variables
+ self.secret_key = langfuse_secret or os.getenv("LANGFUSE_SECRET_KEY")
+ self.public_key = langfuse_public_key or os.getenv("LANGFUSE_PUBLIC_KEY")
+ self.langfuse_host = langfuse_host or os.getenv(
+ "LANGFUSE_HOST", "https://cloud.langfuse.com"
+ )
+ if not (
+ self.langfuse_host.startswith("http://")
+ or self.langfuse_host.startswith("https://")
+ ):
+ # add http:// if unset, assume communicating over private network - e.g. render
+ self.langfuse_host = "http://" + self.langfuse_host
+ self.langfuse_release = os.getenv("LANGFUSE_RELEASE")
+ self.langfuse_debug = os.getenv("LANGFUSE_DEBUG")
+ self.langfuse_flush_interval = LangFuseLogger._get_langfuse_flush_interval(
+ flush_interval
+ )
+ http_client = _get_httpx_client()
+ self.langfuse_client = http_client.client
+
+ parameters = {
+ "public_key": self.public_key,
+ "secret_key": self.secret_key,
+ "host": self.langfuse_host,
+ "release": self.langfuse_release,
+ "debug": self.langfuse_debug,
+ "flush_interval": self.langfuse_flush_interval, # flush interval in seconds
+ "httpx_client": self.langfuse_client,
+ }
+ self.langfuse_sdk_version: str = langfuse.version.__version__
+
+ if Version(self.langfuse_sdk_version) >= Version("2.6.0"):
+ parameters["sdk_integration"] = "litellm"
+
+ self.Langfuse = Langfuse(**parameters)
+
+ # set the current langfuse project id in the environ
+ # this is used by Alerting to link to the correct project
+ try:
+ project_id = self.Langfuse.client.projects.get().data[0].id
+ os.environ["LANGFUSE_PROJECT_ID"] = project_id
+ except Exception:
+ project_id = None
+
+ if os.getenv("UPSTREAM_LANGFUSE_SECRET_KEY") is not None:
+ upstream_langfuse_debug = (
+ str_to_bool(self.upstream_langfuse_debug)
+ if self.upstream_langfuse_debug is not None
+ else None
+ )
+ self.upstream_langfuse_secret_key = os.getenv(
+ "UPSTREAM_LANGFUSE_SECRET_KEY"
+ )
+ self.upstream_langfuse_public_key = os.getenv(
+ "UPSTREAM_LANGFUSE_PUBLIC_KEY"
+ )
+ self.upstream_langfuse_host = os.getenv("UPSTREAM_LANGFUSE_HOST")
+ self.upstream_langfuse_release = os.getenv("UPSTREAM_LANGFUSE_RELEASE")
+ self.upstream_langfuse_debug = os.getenv("UPSTREAM_LANGFUSE_DEBUG")
+ self.upstream_langfuse = Langfuse(
+ public_key=self.upstream_langfuse_public_key,
+ secret_key=self.upstream_langfuse_secret_key,
+ host=self.upstream_langfuse_host,
+ release=self.upstream_langfuse_release,
+ debug=(
+ upstream_langfuse_debug
+ if upstream_langfuse_debug is not None
+ else False
+ ),
+ )
+ else:
+ self.upstream_langfuse = None
+
+ @staticmethod
+ def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
+ """
+ Adds metadata from proxy request headers to Langfuse logging if keys start with "langfuse_"
+ and overwrites litellm_params.metadata if already included.
+
+ For example if you want to append your trace to an existing `trace_id` via header, send
+ `headers: { ..., langfuse_existing_trace_id: your-existing-trace-id }` via proxy request.
+ """
+ if litellm_params is None:
+ return metadata
+
+ if litellm_params.get("proxy_server_request") is None:
+ return metadata
+
+ if metadata is None:
+ metadata = {}
+
+ proxy_headers = (
+ litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
+ )
+
+ for metadata_param_key in proxy_headers:
+ if metadata_param_key.startswith("langfuse_"):
+ trace_param_key = metadata_param_key.replace("langfuse_", "", 1)
+ if trace_param_key in metadata:
+ verbose_logger.warning(
+ f"Overwriting Langfuse `{trace_param_key}` from request header"
+ )
+ else:
+ verbose_logger.debug(
+ f"Found Langfuse `{trace_param_key}` in request header"
+ )
+ metadata[trace_param_key] = proxy_headers.get(metadata_param_key)
+
+ return metadata
+
+ def log_event_on_langfuse(
+ self,
+ kwargs: dict,
+ response_obj: Union[
+ None,
+ dict,
+ EmbeddingResponse,
+ ModelResponse,
+ TextCompletionResponse,
+ ImageResponse,
+ TranscriptionResponse,
+ RerankResponse,
+ HttpxBinaryResponseContent,
+ ],
+ start_time: Optional[datetime] = None,
+ end_time: Optional[datetime] = None,
+ user_id: Optional[str] = None,
+ level: str = "DEFAULT",
+ status_message: Optional[str] = None,
+ ) -> dict:
+ """
+ Logs a success or error event on Langfuse
+ """
+ try:
+ verbose_logger.debug(
+ f"Langfuse Logging - Enters logging function for model {kwargs}"
+ )
+
+ # set default values for input/output for langfuse logging
+ input = None
+ output = None
+
+ litellm_params = kwargs.get("litellm_params", {})
+ litellm_call_id = kwargs.get("litellm_call_id", None)
+ metadata = (
+ litellm_params.get("metadata", {}) or {}
+ ) # if litellm_params['metadata'] == None
+ metadata = self.add_metadata_from_header(litellm_params, metadata)
+ optional_params = copy.deepcopy(kwargs.get("optional_params", {}))
+
+ prompt = {"messages": kwargs.get("messages")}
+
+ functions = optional_params.pop("functions", None)
+ tools = optional_params.pop("tools", None)
+ if functions is not None:
+ prompt["functions"] = functions
+ if tools is not None:
+ prompt["tools"] = tools
+
+ # langfuse only accepts str, int, bool, float for logging
+ for param, value in optional_params.items():
+ if not isinstance(value, (str, int, bool, float)):
+ try:
+ optional_params[param] = str(value)
+ except Exception:
+ # if casting value to str fails don't block logging
+ pass
+
+ input, output = self._get_langfuse_input_output_content(
+ kwargs=kwargs,
+ response_obj=response_obj,
+ prompt=prompt,
+ level=level,
+ status_message=status_message,
+ )
+ verbose_logger.debug(
+ f"OUTPUT IN LANGFUSE: {output}; original: {response_obj}"
+ )
+ trace_id = None
+ generation_id = None
+ if self._is_langfuse_v2():
+ trace_id, generation_id = self._log_langfuse_v2(
+ user_id=user_id,
+ metadata=metadata,
+ litellm_params=litellm_params,
+ output=output,
+ start_time=start_time,
+ end_time=end_time,
+ kwargs=kwargs,
+ optional_params=optional_params,
+ input=input,
+ response_obj=response_obj,
+ level=level,
+ litellm_call_id=litellm_call_id,
+ )
+ elif response_obj is not None:
+ self._log_langfuse_v1(
+ user_id=user_id,
+ metadata=metadata,
+ output=output,
+ start_time=start_time,
+ end_time=end_time,
+ kwargs=kwargs,
+ optional_params=optional_params,
+ input=input,
+ response_obj=response_obj,
+ )
+ verbose_logger.debug(
+ f"Langfuse Layer Logging - final response object: {response_obj}"
+ )
+ verbose_logger.info("Langfuse Layer Logging - logging success")
+
+ return {"trace_id": trace_id, "generation_id": generation_id}
+ except Exception as e:
+ verbose_logger.exception(
+ "Langfuse Layer Error(): Exception occured - {}".format(str(e))
+ )
+ return {"trace_id": None, "generation_id": None}
+
+ def _get_langfuse_input_output_content(
+ self,
+ kwargs: dict,
+ response_obj: Union[
+ None,
+ dict,
+ EmbeddingResponse,
+ ModelResponse,
+ TextCompletionResponse,
+ ImageResponse,
+ TranscriptionResponse,
+ RerankResponse,
+ HttpxBinaryResponseContent,
+ ],
+ prompt: dict,
+ level: str,
+ status_message: Optional[str],
+ ) -> Tuple[Optional[dict], Optional[Union[str, dict, list]]]:
+ """
+ Get the input and output content for Langfuse logging
+
+ Args:
+ kwargs: The keyword arguments passed to the function
+ response_obj: The response object returned by the function
+ prompt: The prompt used to generate the response
+ level: The level of the log message
+ status_message: The status message of the log message
+
+ Returns:
+ input: The input content for Langfuse logging
+ output: The output content for Langfuse logging
+ """
+ input = None
+ output: Optional[Union[str, dict, List[Any]]] = None
+ if (
+ level == "ERROR"
+ and status_message is not None
+ and isinstance(status_message, str)
+ ):
+ input = prompt
+ output = status_message
+ elif response_obj is not None and (
+ kwargs.get("call_type", None) == "embedding"
+ or isinstance(response_obj, litellm.EmbeddingResponse)
+ ):
+ input = prompt
+ output = None
+ elif response_obj is not None and isinstance(
+ response_obj, litellm.ModelResponse
+ ):
+ input = prompt
+ output = self._get_chat_content_for_langfuse(response_obj)
+ elif response_obj is not None and isinstance(
+ response_obj, litellm.HttpxBinaryResponseContent
+ ):
+ input = prompt
+ output = "speech-output"
+ elif response_obj is not None and isinstance(
+ response_obj, litellm.TextCompletionResponse
+ ):
+ input = prompt
+ output = self._get_text_completion_content_for_langfuse(response_obj)
+ elif response_obj is not None and isinstance(
+ response_obj, litellm.ImageResponse
+ ):
+ input = prompt
+ output = response_obj.get("data", None)
+ elif response_obj is not None and isinstance(
+ response_obj, litellm.TranscriptionResponse
+ ):
+ input = prompt
+ output = response_obj.get("text", None)
+ elif response_obj is not None and isinstance(
+ response_obj, litellm.RerankResponse
+ ):
+ input = prompt
+ output = response_obj.results
+ elif (
+ kwargs.get("call_type") is not None
+ and kwargs.get("call_type") == "_arealtime"
+ and response_obj is not None
+ and isinstance(response_obj, list)
+ ):
+ input = kwargs.get("input")
+ output = response_obj
+ elif (
+ kwargs.get("call_type") is not None
+ and kwargs.get("call_type") == "pass_through_endpoint"
+ and response_obj is not None
+ and isinstance(response_obj, dict)
+ ):
+ input = prompt
+ output = response_obj.get("response", "")
+ return input, output
+
+ async def _async_log_event(
+ self, kwargs, response_obj, start_time, end_time, user_id
+ ):
+ """
+ Langfuse SDK uses a background thread to log events
+
+ This approach does not impact latency and runs in the background
+ """
+
+ def _is_langfuse_v2(self):
+ import langfuse
+
+ return Version(langfuse.version.__version__) >= Version("2.0.0")
+
+ def _log_langfuse_v1(
+ self,
+ user_id,
+ metadata,
+ output,
+ start_time,
+ end_time,
+ kwargs,
+ optional_params,
+ input,
+ response_obj,
+ ):
+ from langfuse.model import CreateGeneration, CreateTrace # type: ignore
+
+ verbose_logger.warning(
+ "Please upgrade langfuse to v2.0.0 or higher: https://github.com/langfuse/langfuse-python/releases/tag/v2.0.1"
+ )
+
+ trace = self.Langfuse.trace( # type: ignore
+ CreateTrace( # type: ignore
+ name=metadata.get("generation_name", "litellm-completion"),
+ input=input,
+ output=output,
+ userId=user_id,
+ )
+ )
+
+ trace.generation(
+ CreateGeneration(
+ name=metadata.get("generation_name", "litellm-completion"),
+ startTime=start_time,
+ endTime=end_time,
+ model=kwargs["model"],
+ modelParameters=optional_params,
+ prompt=input,
+ completion=output,
+ usage={
+ "prompt_tokens": response_obj.usage.prompt_tokens,
+ "completion_tokens": response_obj.usage.completion_tokens,
+ },
+ metadata=metadata,
+ )
+ )
+
+ def _log_langfuse_v2( # noqa: PLR0915
+ self,
+ user_id: Optional[str],
+ metadata: dict,
+ litellm_params: dict,
+ output: Optional[Union[str, dict, list]],
+ start_time: Optional[datetime],
+ end_time: Optional[datetime],
+ kwargs: dict,
+ optional_params: dict,
+ input: Optional[dict],
+ response_obj,
+ level: str,
+ litellm_call_id: Optional[str],
+ ) -> tuple:
+ verbose_logger.debug("Langfuse Layer Logging - logging to langfuse v2")
+
+ try:
+ metadata = metadata or {}
+ standard_logging_object: Optional[StandardLoggingPayload] = cast(
+ Optional[StandardLoggingPayload],
+ kwargs.get("standard_logging_object", None),
+ )
+ tags = (
+ self._get_langfuse_tags(standard_logging_object=standard_logging_object)
+ if self._supports_tags()
+ else []
+ )
+
+ if standard_logging_object is None:
+ end_user_id = None
+ prompt_management_metadata: Optional[
+ StandardLoggingPromptManagementMetadata
+ ] = None
+ else:
+ end_user_id = standard_logging_object["metadata"].get(
+ "user_api_key_end_user_id", None
+ )
+
+ prompt_management_metadata = cast(
+ Optional[StandardLoggingPromptManagementMetadata],
+ standard_logging_object["metadata"].get(
+ "prompt_management_metadata", None
+ ),
+ )
+
+ # Clean Metadata before logging - never log raw metadata
+ # the raw metadata can contain circular references which leads to infinite recursion
+ # we clean out all extra litellm metadata params before logging
+ clean_metadata: Dict[str, Any] = {}
+ if prompt_management_metadata is not None:
+ clean_metadata["prompt_management_metadata"] = (
+ prompt_management_metadata
+ )
+ if isinstance(metadata, dict):
+ for key, value in metadata.items():
+ # generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
+ if (
+ litellm.langfuse_default_tags is not None
+ and isinstance(litellm.langfuse_default_tags, list)
+ and key in litellm.langfuse_default_tags
+ ):
+ tags.append(f"{key}:{value}")
+
+ # clean litellm metadata before logging
+ if key in [
+ "headers",
+ "endpoint",
+ "caching_groups",
+ "previous_models",
+ ]:
+ continue
+ else:
+ clean_metadata[key] = value
+
+ # Add default langfuse tags
+ tags = self.add_default_langfuse_tags(
+ tags=tags, kwargs=kwargs, metadata=metadata
+ )
+
+ session_id = clean_metadata.pop("session_id", None)
+ trace_name = cast(Optional[str], clean_metadata.pop("trace_name", None))
+ trace_id = clean_metadata.pop("trace_id", litellm_call_id)
+ existing_trace_id = clean_metadata.pop("existing_trace_id", None)
+ update_trace_keys = cast(list, clean_metadata.pop("update_trace_keys", []))
+ debug = clean_metadata.pop("debug_langfuse", None)
+ mask_input = clean_metadata.pop("mask_input", False)
+ mask_output = clean_metadata.pop("mask_output", False)
+
+ clean_metadata = redact_user_api_key_info(metadata=clean_metadata)
+
+ if trace_name is None and existing_trace_id is None:
+ # just log `litellm-{call_type}` as the trace name
+ ## DO NOT SET TRACE_NAME if trace-id set. this can lead to overwriting of past traces.
+ trace_name = f"litellm-{kwargs.get('call_type', 'completion')}"
+
+ if existing_trace_id is not None:
+ trace_params: Dict[str, Any] = {"id": existing_trace_id}
+
+ # Update the following keys for this trace
+ for metadata_param_key in update_trace_keys:
+ trace_param_key = metadata_param_key.replace("trace_", "")
+ if trace_param_key not in trace_params:
+ updated_trace_value = clean_metadata.pop(
+ metadata_param_key, None
+ )
+ if updated_trace_value is not None:
+ trace_params[trace_param_key] = updated_trace_value
+
+ # Pop the trace specific keys that would have been popped if there were a new trace
+ for key in list(
+ filter(lambda key: key.startswith("trace_"), clean_metadata.keys())
+ ):
+ clean_metadata.pop(key, None)
+
+ # Special keys that are found in the function arguments and not the metadata
+ if "input" in update_trace_keys:
+ trace_params["input"] = (
+ input if not mask_input else "redacted-by-litellm"
+ )
+ if "output" in update_trace_keys:
+ trace_params["output"] = (
+ output if not mask_output else "redacted-by-litellm"
+ )
+ else: # don't overwrite an existing trace
+ trace_params = {
+ "id": trace_id,
+ "name": trace_name,
+ "session_id": session_id,
+ "input": input if not mask_input else "redacted-by-litellm",
+ "version": clean_metadata.pop(
+ "trace_version", clean_metadata.get("version", None)
+ ), # If provided just version, it will applied to the trace as well, if applied a trace version it will take precedence
+ "user_id": end_user_id,
+ }
+ for key in list(
+ filter(lambda key: key.startswith("trace_"), clean_metadata.keys())
+ ):
+ trace_params[key.replace("trace_", "")] = clean_metadata.pop(
+ key, None
+ )
+
+ if level == "ERROR":
+ trace_params["status_message"] = output
+ else:
+ trace_params["output"] = (
+ output if not mask_output else "redacted-by-litellm"
+ )
+
+ if debug is True or (isinstance(debug, str) and debug.lower() == "true"):
+ if "metadata" in trace_params:
+ # log the raw_metadata in the trace
+ trace_params["metadata"]["metadata_passed_to_litellm"] = metadata
+ else:
+ trace_params["metadata"] = {"metadata_passed_to_litellm": metadata}
+
+ cost = kwargs.get("response_cost", None)
+ verbose_logger.debug(f"trace: {cost}")
+
+ clean_metadata["litellm_response_cost"] = cost
+ if standard_logging_object is not None:
+ clean_metadata["hidden_params"] = standard_logging_object[
+ "hidden_params"
+ ]
+
+ if (
+ litellm.langfuse_default_tags is not None
+ and isinstance(litellm.langfuse_default_tags, list)
+ and "proxy_base_url" in litellm.langfuse_default_tags
+ ):
+ proxy_base_url = os.environ.get("PROXY_BASE_URL", None)
+ if proxy_base_url is not None:
+ tags.append(f"proxy_base_url:{proxy_base_url}")
+
+ api_base = litellm_params.get("api_base", None)
+ if api_base:
+ clean_metadata["api_base"] = api_base
+
+ vertex_location = kwargs.get("vertex_location", None)
+ if vertex_location:
+ clean_metadata["vertex_location"] = vertex_location
+
+ aws_region_name = kwargs.get("aws_region_name", None)
+ if aws_region_name:
+ clean_metadata["aws_region_name"] = aws_region_name
+
+ if self._supports_tags():
+ if "cache_hit" in kwargs:
+ if kwargs["cache_hit"] is None:
+ kwargs["cache_hit"] = False
+ clean_metadata["cache_hit"] = kwargs["cache_hit"]
+ if existing_trace_id is None:
+ trace_params.update({"tags": tags})
+
+ proxy_server_request = litellm_params.get("proxy_server_request", None)
+ if proxy_server_request:
+ proxy_server_request.get("method", None)
+ proxy_server_request.get("url", None)
+ headers = proxy_server_request.get("headers", None)
+ clean_headers = {}
+ if headers:
+ for key, value in headers.items():
+ # these headers can leak our API keys and/or JWT tokens
+ if key.lower() not in ["authorization", "cookie", "referer"]:
+ clean_headers[key] = value
+
+ # clean_metadata["request"] = {
+ # "method": method,
+ # "url": url,
+ # "headers": clean_headers,
+ # }
+ trace = self.Langfuse.trace(**trace_params)
+
+ # Log provider specific information as a span
+ log_provider_specific_information_as_span(trace, clean_metadata)
+
+ generation_id = None
+ usage = None
+ if response_obj is not None:
+ if (
+ hasattr(response_obj, "id")
+ and response_obj.get("id", None) is not None
+ ):
+ generation_id = litellm.utils.get_logging_id(
+ start_time, response_obj
+ )
+ _usage_obj = getattr(response_obj, "usage", None)
+
+ if _usage_obj:
+ usage = {
+ "prompt_tokens": _usage_obj.prompt_tokens,
+ "completion_tokens": _usage_obj.completion_tokens,
+ "total_cost": cost if self._supports_costs() else None,
+ }
+ generation_name = clean_metadata.pop("generation_name", None)
+ if generation_name is None:
+ # if `generation_name` is None, use sensible default values
+ # If using litellm proxy user `key_alias` if not None
+ # If `key_alias` is None, just log `litellm-{call_type}` as the generation name
+ _user_api_key_alias = cast(
+ Optional[str], clean_metadata.get("user_api_key_alias", None)
+ )
+ generation_name = (
+ f"litellm-{cast(str, kwargs.get('call_type', 'completion'))}"
+ )
+ if _user_api_key_alias is not None:
+ generation_name = f"litellm:{_user_api_key_alias}"
+
+ if response_obj is not None:
+ system_fingerprint = getattr(response_obj, "system_fingerprint", None)
+ else:
+ system_fingerprint = None
+
+ if system_fingerprint is not None:
+ optional_params["system_fingerprint"] = system_fingerprint
+
+ generation_params = {
+ "name": generation_name,
+ "id": clean_metadata.pop("generation_id", generation_id),
+ "start_time": start_time,
+ "end_time": end_time,
+ "model": kwargs["model"],
+ "model_parameters": optional_params,
+ "input": input if not mask_input else "redacted-by-litellm",
+ "output": output if not mask_output else "redacted-by-litellm",
+ "usage": usage,
+ "metadata": log_requester_metadata(clean_metadata),
+ "level": level,
+ "version": clean_metadata.pop("version", None),
+ }
+
+ parent_observation_id = metadata.get("parent_observation_id", None)
+ if parent_observation_id is not None:
+ generation_params["parent_observation_id"] = parent_observation_id
+
+ if self._supports_prompt():
+ generation_params = _add_prompt_to_generation_params(
+ generation_params=generation_params,
+ clean_metadata=clean_metadata,
+ prompt_management_metadata=prompt_management_metadata,
+ langfuse_client=self.Langfuse,
+ )
+ if output is not None and isinstance(output, str) and level == "ERROR":
+ generation_params["status_message"] = output
+
+ if self._supports_completion_start_time():
+ generation_params["completion_start_time"] = kwargs.get(
+ "completion_start_time", None
+ )
+
+ generation_client = trace.generation(**generation_params)
+
+ return generation_client.trace_id, generation_id
+ except Exception:
+ verbose_logger.error(f"Langfuse Layer Error - {traceback.format_exc()}")
+ return None, None
+
+ @staticmethod
+ def _get_chat_content_for_langfuse(
+ response_obj: ModelResponse,
+ ):
+ """
+ Get the chat content for Langfuse logging
+ """
+ if response_obj.choices and len(response_obj.choices) > 0:
+ output = response_obj["choices"][0]["message"].json()
+ return output
+ else:
+ return None
+
+ @staticmethod
+ def _get_text_completion_content_for_langfuse(
+ response_obj: TextCompletionResponse,
+ ):
+ """
+ Get the text completion content for Langfuse logging
+ """
+ if response_obj.choices and len(response_obj.choices) > 0:
+ return response_obj.choices[0].text
+ else:
+ return None
+
+ @staticmethod
+ def _get_langfuse_tags(
+ standard_logging_object: Optional[StandardLoggingPayload],
+ ) -> List[str]:
+ if standard_logging_object is None:
+ return []
+ return standard_logging_object.get("request_tags", []) or []
+
+ def add_default_langfuse_tags(self, tags, kwargs, metadata):
+ """
+ Helper function to add litellm default langfuse tags
+
+ - Special LiteLLM tags:
+ - cache_hit
+ - cache_key
+
+ """
+ if litellm.langfuse_default_tags is not None and isinstance(
+ litellm.langfuse_default_tags, list
+ ):
+ if "cache_hit" in litellm.langfuse_default_tags:
+ _cache_hit_value = kwargs.get("cache_hit", False)
+ tags.append(f"cache_hit:{_cache_hit_value}")
+ if "cache_key" in litellm.langfuse_default_tags:
+ _hidden_params = metadata.get("hidden_params", {}) or {}
+ _cache_key = _hidden_params.get("cache_key", None)
+ if _cache_key is None and litellm.cache is not None:
+ # fallback to using "preset_cache_key"
+ _preset_cache_key = litellm.cache._get_preset_cache_key_from_kwargs(
+ **kwargs
+ )
+ _cache_key = _preset_cache_key
+ tags.append(f"cache_key:{_cache_key}")
+ return tags
+
+ def _supports_tags(self):
+ """Check if current langfuse version supports tags"""
+ return Version(self.langfuse_sdk_version) >= Version("2.6.3")
+
+ def _supports_prompt(self):
+ """Check if current langfuse version supports prompt"""
+ return Version(self.langfuse_sdk_version) >= Version("2.7.3")
+
+ def _supports_costs(self):
+ """Check if current langfuse version supports costs"""
+ return Version(self.langfuse_sdk_version) >= Version("2.7.3")
+
+ def _supports_completion_start_time(self):
+ """Check if current langfuse version supports completion start time"""
+ return Version(self.langfuse_sdk_version) >= Version("2.7.3")
+
+ @staticmethod
+ def _get_langfuse_flush_interval(flush_interval: int) -> int:
+ """
+ Get the langfuse flush interval to initialize the Langfuse client
+
+ Reads `LANGFUSE_FLUSH_INTERVAL` from the environment variable.
+ If not set, uses the flush interval passed in as an argument.
+
+ Args:
+ flush_interval: The flush interval to use if LANGFUSE_FLUSH_INTERVAL is not set
+
+ Returns:
+ [int] The flush interval to use to initialize the Langfuse client
+ """
+ return int(os.getenv("LANGFUSE_FLUSH_INTERVAL") or flush_interval)
+
+
+def _add_prompt_to_generation_params(
+ generation_params: dict,
+ clean_metadata: dict,
+ prompt_management_metadata: Optional[StandardLoggingPromptManagementMetadata],
+ langfuse_client: Any,
+) -> dict:
+ from langfuse import Langfuse
+ from langfuse.model import (
+ ChatPromptClient,
+ Prompt_Chat,
+ Prompt_Text,
+ TextPromptClient,
+ )
+
+ langfuse_client = cast(Langfuse, langfuse_client)
+
+ user_prompt = clean_metadata.pop("prompt", None)
+ if user_prompt is None and prompt_management_metadata is None:
+ pass
+ elif isinstance(user_prompt, dict):
+ if user_prompt.get("type", "") == "chat":
+ _prompt_chat = Prompt_Chat(**user_prompt)
+ generation_params["prompt"] = ChatPromptClient(prompt=_prompt_chat)
+ elif user_prompt.get("type", "") == "text":
+ _prompt_text = Prompt_Text(**user_prompt)
+ generation_params["prompt"] = TextPromptClient(prompt=_prompt_text)
+ elif "version" in user_prompt and "prompt" in user_prompt:
+ # prompts
+ if isinstance(user_prompt["prompt"], str):
+ prompt_text_params = getattr(
+ Prompt_Text, "model_fields", Prompt_Text.__fields__
+ )
+ _data = {
+ "name": user_prompt["name"],
+ "prompt": user_prompt["prompt"],
+ "version": user_prompt["version"],
+ "config": user_prompt.get("config", None),
+ }
+ if "labels" in prompt_text_params and "tags" in prompt_text_params:
+ _data["labels"] = user_prompt.get("labels", []) or []
+ _data["tags"] = user_prompt.get("tags", []) or []
+ _prompt_obj = Prompt_Text(**_data) # type: ignore
+ generation_params["prompt"] = TextPromptClient(prompt=_prompt_obj)
+
+ elif isinstance(user_prompt["prompt"], list):
+ prompt_chat_params = getattr(
+ Prompt_Chat, "model_fields", Prompt_Chat.__fields__
+ )
+ _data = {
+ "name": user_prompt["name"],
+ "prompt": user_prompt["prompt"],
+ "version": user_prompt["version"],
+ "config": user_prompt.get("config", None),
+ }
+ if "labels" in prompt_chat_params and "tags" in prompt_chat_params:
+ _data["labels"] = user_prompt.get("labels", []) or []
+ _data["tags"] = user_prompt.get("tags", []) or []
+
+ _prompt_obj = Prompt_Chat(**_data) # type: ignore
+
+ generation_params["prompt"] = ChatPromptClient(prompt=_prompt_obj)
+ else:
+ verbose_logger.error(
+ "[Non-blocking] Langfuse Logger: Invalid prompt format"
+ )
+ else:
+ verbose_logger.error(
+ "[Non-blocking] Langfuse Logger: Invalid prompt format. No prompt logged to Langfuse"
+ )
+ elif (
+ prompt_management_metadata is not None
+ and prompt_management_metadata["prompt_integration"] == "langfuse"
+ ):
+ try:
+ generation_params["prompt"] = langfuse_client.get_prompt(
+ prompt_management_metadata["prompt_id"]
+ )
+ except Exception as e:
+ verbose_logger.debug(
+ f"[Non-blocking] Langfuse Logger: Error getting prompt client for logging: {e}"
+ )
+ pass
+
+ else:
+ generation_params["prompt"] = user_prompt
+
+ return generation_params
+
+
+def log_provider_specific_information_as_span(
+ trace,
+ clean_metadata,
+):
+ """
+ Logs provider-specific information as spans.
+
+ Parameters:
+ trace: The tracing object used to log spans.
+ clean_metadata: A dictionary containing metadata to be logged.
+
+ Returns:
+ None
+ """
+
+ _hidden_params = clean_metadata.get("hidden_params", None)
+ if _hidden_params is None:
+ return
+
+ vertex_ai_grounding_metadata = _hidden_params.get(
+ "vertex_ai_grounding_metadata", None
+ )
+
+ if vertex_ai_grounding_metadata is not None:
+ if isinstance(vertex_ai_grounding_metadata, list):
+ for elem in vertex_ai_grounding_metadata:
+ if isinstance(elem, dict):
+ for key, value in elem.items():
+ trace.span(
+ name=key,
+ input=value,
+ )
+ else:
+ trace.span(
+ name="vertex_ai_grounding_metadata",
+ input=elem,
+ )
+ else:
+ trace.span(
+ name="vertex_ai_grounding_metadata",
+ input=vertex_ai_grounding_metadata,
+ )
+
+
+def log_requester_metadata(clean_metadata: dict):
+ returned_metadata = {}
+ requester_metadata = clean_metadata.get("requester_metadata") or {}
+ for k, v in clean_metadata.items():
+ if k not in requester_metadata:
+ returned_metadata[k] = v
+
+ returned_metadata.update({"requester_metadata": requester_metadata})
+
+ return returned_metadata
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_handler.py b/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_handler.py
new file mode 100644
index 00000000..aebe1461
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_handler.py
@@ -0,0 +1,169 @@
+"""
+This file contains the LangFuseHandler class
+
+Used to get the LangFuseLogger for a given request
+
+Handles Key/Team Based Langfuse Logging
+"""
+
+from typing import TYPE_CHECKING, Any, Dict, Optional
+
+from litellm.litellm_core_utils.litellm_logging import StandardCallbackDynamicParams
+
+from .langfuse import LangFuseLogger, LangfuseLoggingConfig
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import DynamicLoggingCache
+else:
+ DynamicLoggingCache = Any
+
+
+class LangFuseHandler:
+
+ @staticmethod
+ def get_langfuse_logger_for_request(
+ standard_callback_dynamic_params: StandardCallbackDynamicParams,
+ in_memory_dynamic_logger_cache: DynamicLoggingCache,
+ globalLangfuseLogger: Optional[LangFuseLogger] = None,
+ ) -> LangFuseLogger:
+ """
+ This function is used to get the LangFuseLogger for a given request
+
+ 1. If dynamic credentials are passed
+ - check if a LangFuseLogger is cached for the dynamic credentials
+ - if cached LangFuseLogger is not found, create a new LangFuseLogger and cache it
+
+ 2. If dynamic credentials are not passed return the globalLangfuseLogger
+
+ """
+ temp_langfuse_logger: Optional[LangFuseLogger] = globalLangfuseLogger
+ if (
+ LangFuseHandler._dynamic_langfuse_credentials_are_passed(
+ standard_callback_dynamic_params
+ )
+ is False
+ ):
+ return LangFuseHandler._return_global_langfuse_logger(
+ globalLangfuseLogger=globalLangfuseLogger,
+ in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
+ )
+
+ # get langfuse logging config to use for this request, based on standard_callback_dynamic_params
+ _credentials = LangFuseHandler.get_dynamic_langfuse_logging_config(
+ globalLangfuseLogger=globalLangfuseLogger,
+ standard_callback_dynamic_params=standard_callback_dynamic_params,
+ )
+ credentials_dict = dict(_credentials)
+
+ # check if langfuse logger is already cached
+ temp_langfuse_logger = in_memory_dynamic_logger_cache.get_cache(
+ credentials=credentials_dict, service_name="langfuse"
+ )
+
+ # if not cached, create a new langfuse logger and cache it
+ if temp_langfuse_logger is None:
+ temp_langfuse_logger = (
+ LangFuseHandler._create_langfuse_logger_from_credentials(
+ credentials=credentials_dict,
+ in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
+ )
+ )
+
+ return temp_langfuse_logger
+
+ @staticmethod
+ def _return_global_langfuse_logger(
+ globalLangfuseLogger: Optional[LangFuseLogger],
+ in_memory_dynamic_logger_cache: DynamicLoggingCache,
+ ) -> LangFuseLogger:
+ """
+ Returns the Global LangfuseLogger set on litellm
+
+ (this is the default langfuse logger - used when no dynamic credentials are passed)
+
+ If no Global LangfuseLogger is set, it will check in_memory_dynamic_logger_cache for a cached LangFuseLogger
+ This function is used to return the globalLangfuseLogger if it exists, otherwise it will check in_memory_dynamic_logger_cache for a cached LangFuseLogger
+ """
+ if globalLangfuseLogger is not None:
+ return globalLangfuseLogger
+
+ credentials_dict: Dict[str, Any] = (
+ {}
+ ) # the global langfuse logger uses Environment Variables, there are no dynamic credentials
+ globalLangfuseLogger = in_memory_dynamic_logger_cache.get_cache(
+ credentials=credentials_dict,
+ service_name="langfuse",
+ )
+ if globalLangfuseLogger is None:
+ globalLangfuseLogger = (
+ LangFuseHandler._create_langfuse_logger_from_credentials(
+ credentials=credentials_dict,
+ in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
+ )
+ )
+ return globalLangfuseLogger
+
+ @staticmethod
+ def _create_langfuse_logger_from_credentials(
+ credentials: Dict,
+ in_memory_dynamic_logger_cache: DynamicLoggingCache,
+ ) -> LangFuseLogger:
+ """
+ This function is used to
+ 1. create a LangFuseLogger from the credentials
+ 2. cache the LangFuseLogger to prevent re-creating it for the same credentials
+ """
+
+ langfuse_logger = LangFuseLogger(
+ langfuse_public_key=credentials.get("langfuse_public_key"),
+ langfuse_secret=credentials.get("langfuse_secret"),
+ langfuse_host=credentials.get("langfuse_host"),
+ )
+ in_memory_dynamic_logger_cache.set_cache(
+ credentials=credentials,
+ service_name="langfuse",
+ logging_obj=langfuse_logger,
+ )
+ return langfuse_logger
+
+ @staticmethod
+ def get_dynamic_langfuse_logging_config(
+ standard_callback_dynamic_params: StandardCallbackDynamicParams,
+ globalLangfuseLogger: Optional[LangFuseLogger] = None,
+ ) -> LangfuseLoggingConfig:
+ """
+ This function is used to get the Langfuse logging config to use for a given request.
+
+ It checks if the dynamic parameters are provided in the standard_callback_dynamic_params and uses them to get the Langfuse logging config.
+
+ If no dynamic parameters are provided, it uses the `globalLangfuseLogger` values
+ """
+ # only use dynamic params if langfuse credentials are passed dynamically
+ return LangfuseLoggingConfig(
+ langfuse_secret=standard_callback_dynamic_params.get("langfuse_secret")
+ or standard_callback_dynamic_params.get("langfuse_secret_key"),
+ langfuse_public_key=standard_callback_dynamic_params.get(
+ "langfuse_public_key"
+ ),
+ langfuse_host=standard_callback_dynamic_params.get("langfuse_host"),
+ )
+
+ @staticmethod
+ def _dynamic_langfuse_credentials_are_passed(
+ standard_callback_dynamic_params: StandardCallbackDynamicParams,
+ ) -> bool:
+ """
+ This function is used to check if the dynamic langfuse credentials are passed in standard_callback_dynamic_params
+
+ Returns:
+ bool: True if the dynamic langfuse credentials are passed, False otherwise
+ """
+
+ if (
+ standard_callback_dynamic_params.get("langfuse_host") is not None
+ or standard_callback_dynamic_params.get("langfuse_public_key") is not None
+ or standard_callback_dynamic_params.get("langfuse_secret") is not None
+ or standard_callback_dynamic_params.get("langfuse_secret_key") is not None
+ ):
+ return True
+ return False
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_prompt_management.py b/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_prompt_management.py
new file mode 100644
index 00000000..1f4ca84d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/langfuse/langfuse_prompt_management.py
@@ -0,0 +1,287 @@
+"""
+Call Hook for LiteLLM Proxy which allows Langfuse prompt management.
+"""
+
+import os
+from functools import lru_cache
+from typing import TYPE_CHECKING, Any, List, Literal, Optional, Tuple, Union, cast
+
+from packaging.version import Version
+from typing_extensions import TypeAlias
+
+from litellm.integrations.custom_logger import CustomLogger
+from litellm.integrations.prompt_management_base import PromptManagementClient
+from litellm.litellm_core_utils.asyncify import run_async_function
+from litellm.types.llms.openai import AllMessageValues, ChatCompletionSystemMessage
+from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
+
+from ...litellm_core_utils.specialty_caches.dynamic_logging_cache import (
+ DynamicLoggingCache,
+)
+from ..prompt_management_base import PromptManagementBase
+from .langfuse import LangFuseLogger
+from .langfuse_handler import LangFuseHandler
+
+if TYPE_CHECKING:
+ from langfuse import Langfuse
+ from langfuse.client import ChatPromptClient, TextPromptClient
+
+ LangfuseClass: TypeAlias = Langfuse
+
+ PROMPT_CLIENT = Union[TextPromptClient, ChatPromptClient]
+else:
+ PROMPT_CLIENT = Any
+ LangfuseClass = Any
+
+in_memory_dynamic_logger_cache = DynamicLoggingCache()
+
+
+@lru_cache(maxsize=10)
+def langfuse_client_init(
+ langfuse_public_key=None,
+ langfuse_secret=None,
+ langfuse_secret_key=None,
+ langfuse_host=None,
+ flush_interval=1,
+) -> LangfuseClass:
+ """
+ Initialize Langfuse client with caching to prevent multiple initializations.
+
+ Args:
+ langfuse_public_key (str, optional): Public key for Langfuse. Defaults to None.
+ langfuse_secret (str, optional): Secret key for Langfuse. Defaults to None.
+ langfuse_host (str, optional): Host URL for Langfuse. Defaults to None.
+ flush_interval (int, optional): Flush interval in seconds. Defaults to 1.
+
+ Returns:
+ Langfuse: Initialized Langfuse client instance
+
+ Raises:
+ Exception: If langfuse package is not installed
+ """
+ try:
+ import langfuse
+ from langfuse import Langfuse
+ except Exception as e:
+ raise Exception(
+ f"\033[91mLangfuse not installed, try running 'pip install langfuse' to fix this error: {e}\n\033[0m"
+ )
+
+ # Instance variables
+
+ secret_key = (
+ langfuse_secret or langfuse_secret_key or os.getenv("LANGFUSE_SECRET_KEY")
+ )
+ public_key = langfuse_public_key or os.getenv("LANGFUSE_PUBLIC_KEY")
+ langfuse_host = langfuse_host or os.getenv(
+ "LANGFUSE_HOST", "https://cloud.langfuse.com"
+ )
+
+ if not (
+ langfuse_host.startswith("http://") or langfuse_host.startswith("https://")
+ ):
+ # add http:// if unset, assume communicating over private network - e.g. render
+ langfuse_host = "http://" + langfuse_host
+
+ langfuse_release = os.getenv("LANGFUSE_RELEASE")
+ langfuse_debug = os.getenv("LANGFUSE_DEBUG")
+
+ parameters = {
+ "public_key": public_key,
+ "secret_key": secret_key,
+ "host": langfuse_host,
+ "release": langfuse_release,
+ "debug": langfuse_debug,
+ "flush_interval": LangFuseLogger._get_langfuse_flush_interval(
+ flush_interval
+ ), # flush interval in seconds
+ }
+
+ if Version(langfuse.version.__version__) >= Version("2.6.0"):
+ parameters["sdk_integration"] = "litellm"
+
+ client = Langfuse(**parameters)
+
+ return client
+
+
+class LangfusePromptManagement(LangFuseLogger, PromptManagementBase, CustomLogger):
+ def __init__(
+ self,
+ langfuse_public_key=None,
+ langfuse_secret=None,
+ langfuse_host=None,
+ flush_interval=1,
+ ):
+ import langfuse
+
+ self.langfuse_sdk_version = langfuse.version.__version__
+ self.Langfuse = langfuse_client_init(
+ langfuse_public_key=langfuse_public_key,
+ langfuse_secret=langfuse_secret,
+ langfuse_host=langfuse_host,
+ flush_interval=flush_interval,
+ )
+
+ @property
+ def integration_name(self):
+ return "langfuse"
+
+ def _get_prompt_from_id(
+ self, langfuse_prompt_id: str, langfuse_client: LangfuseClass
+ ) -> PROMPT_CLIENT:
+ return langfuse_client.get_prompt(langfuse_prompt_id)
+
+ def _compile_prompt(
+ self,
+ langfuse_prompt_client: PROMPT_CLIENT,
+ langfuse_prompt_variables: Optional[dict],
+ call_type: Union[Literal["completion"], Literal["text_completion"]],
+ ) -> List[AllMessageValues]:
+ compiled_prompt: Optional[Union[str, list]] = None
+
+ if langfuse_prompt_variables is None:
+ langfuse_prompt_variables = {}
+
+ compiled_prompt = langfuse_prompt_client.compile(**langfuse_prompt_variables)
+
+ if isinstance(compiled_prompt, str):
+ compiled_prompt = [
+ ChatCompletionSystemMessage(role="system", content=compiled_prompt)
+ ]
+ else:
+ compiled_prompt = cast(List[AllMessageValues], compiled_prompt)
+
+ return compiled_prompt
+
+ def _get_optional_params_from_langfuse(
+ self, langfuse_prompt_client: PROMPT_CLIENT
+ ) -> dict:
+ config = langfuse_prompt_client.config
+ optional_params = {}
+ for k, v in config.items():
+ if k != "model":
+ optional_params[k] = v
+ return optional_params
+
+ async def async_get_chat_completion_prompt(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ non_default_params: dict,
+ prompt_id: str,
+ prompt_variables: Optional[dict],
+ dynamic_callback_params: StandardCallbackDynamicParams,
+ ) -> Tuple[
+ str,
+ List[AllMessageValues],
+ dict,
+ ]:
+ return self.get_chat_completion_prompt(
+ model,
+ messages,
+ non_default_params,
+ prompt_id,
+ prompt_variables,
+ dynamic_callback_params,
+ )
+
+ def should_run_prompt_management(
+ self,
+ prompt_id: str,
+ dynamic_callback_params: StandardCallbackDynamicParams,
+ ) -> bool:
+ langfuse_client = langfuse_client_init(
+ langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
+ langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
+ langfuse_secret_key=dynamic_callback_params.get("langfuse_secret_key"),
+ langfuse_host=dynamic_callback_params.get("langfuse_host"),
+ )
+ langfuse_prompt_client = self._get_prompt_from_id(
+ langfuse_prompt_id=prompt_id, langfuse_client=langfuse_client
+ )
+ return langfuse_prompt_client is not None
+
+ def _compile_prompt_helper(
+ self,
+ prompt_id: str,
+ prompt_variables: Optional[dict],
+ dynamic_callback_params: StandardCallbackDynamicParams,
+ ) -> PromptManagementClient:
+ langfuse_client = langfuse_client_init(
+ langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
+ langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
+ langfuse_secret_key=dynamic_callback_params.get("langfuse_secret_key"),
+ langfuse_host=dynamic_callback_params.get("langfuse_host"),
+ )
+ langfuse_prompt_client = self._get_prompt_from_id(
+ langfuse_prompt_id=prompt_id, langfuse_client=langfuse_client
+ )
+
+ ## SET PROMPT
+ compiled_prompt = self._compile_prompt(
+ langfuse_prompt_client=langfuse_prompt_client,
+ langfuse_prompt_variables=prompt_variables,
+ call_type="completion",
+ )
+
+ template_model = langfuse_prompt_client.config.get("model")
+
+ template_optional_params = self._get_optional_params_from_langfuse(
+ langfuse_prompt_client
+ )
+
+ return PromptManagementClient(
+ prompt_id=prompt_id,
+ prompt_template=compiled_prompt,
+ prompt_template_model=template_model,
+ prompt_template_optional_params=template_optional_params,
+ completed_messages=None,
+ )
+
+ def log_success_event(self, kwargs, response_obj, start_time, end_time):
+ return run_async_function(
+ self.async_log_success_event, kwargs, response_obj, start_time, end_time
+ )
+
+ async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
+ standard_callback_dynamic_params = kwargs.get(
+ "standard_callback_dynamic_params"
+ )
+ langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
+ globalLangfuseLogger=self,
+ standard_callback_dynamic_params=standard_callback_dynamic_params,
+ in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
+ )
+ langfuse_logger_to_use.log_event_on_langfuse(
+ kwargs=kwargs,
+ response_obj=response_obj,
+ start_time=start_time,
+ end_time=end_time,
+ user_id=kwargs.get("user", None),
+ )
+
+ async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
+ standard_callback_dynamic_params = kwargs.get(
+ "standard_callback_dynamic_params"
+ )
+ langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
+ globalLangfuseLogger=self,
+ standard_callback_dynamic_params=standard_callback_dynamic_params,
+ in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
+ )
+ standard_logging_object = cast(
+ Optional[StandardLoggingPayload],
+ kwargs.get("standard_logging_object", None),
+ )
+ if standard_logging_object is None:
+ return
+ langfuse_logger_to_use.log_event_on_langfuse(
+ start_time=start_time,
+ end_time=end_time,
+ response_obj=None,
+ user_id=kwargs.get("user", None),
+ status_message=standard_logging_object["error_str"],
+ level="ERROR",
+ kwargs=kwargs,
+ )