aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/Readme.md12
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket.py237
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket_base.py326
3 files changed, 575 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/Readme.md b/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/Readme.md
new file mode 100644
index 00000000..2ab0b233
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/Readme.md
@@ -0,0 +1,12 @@
+# GCS (Google Cloud Storage) Bucket Logging on LiteLLM Gateway
+
+This folder contains the GCS Bucket Logging integration for LiteLLM Gateway.
+
+## Folder Structure
+
+- `gcs_bucket.py`: This is the main file that handles failure/success logging to GCS Bucket
+- `gcs_bucket_base.py`: This file contains the GCSBucketBase class which handles Authentication for GCS Buckets
+
+## Further Reading
+- [Doc setting up GCS Bucket Logging on LiteLLM Proxy (Gateway)](https://docs.litellm.ai/docs/proxy/bucket)
+- [Doc on Key / Team Based logging with GCS](https://docs.litellm.ai/docs/proxy/team_logging) \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket.py b/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket.py
new file mode 100644
index 00000000..187ab779
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket.py
@@ -0,0 +1,237 @@
+import asyncio
+import json
+import os
+import uuid
+from datetime import datetime, timedelta, timezone
+from typing import TYPE_CHECKING, Any, Dict, List, Optional
+from urllib.parse import quote
+
+from litellm._logging import verbose_logger
+from litellm.integrations.additional_logging_utils import AdditionalLoggingUtils
+from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase
+from litellm.proxy._types import CommonProxyErrors
+from litellm.types.integrations.base_health_check import IntegrationHealthCheckStatus
+from litellm.types.integrations.gcs_bucket import *
+from litellm.types.utils import StandardLoggingPayload
+
+if TYPE_CHECKING:
+ from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
+else:
+ VertexBase = Any
+
+
+GCS_DEFAULT_BATCH_SIZE = 2048
+GCS_DEFAULT_FLUSH_INTERVAL_SECONDS = 20
+
+
+class GCSBucketLogger(GCSBucketBase, AdditionalLoggingUtils):
+ def __init__(self, bucket_name: Optional[str] = None) -> None:
+ from litellm.proxy.proxy_server import premium_user
+
+ super().__init__(bucket_name=bucket_name)
+
+ # Init Batch logging settings
+ self.log_queue: List[GCSLogQueueItem] = []
+ self.batch_size = int(os.getenv("GCS_BATCH_SIZE", GCS_DEFAULT_BATCH_SIZE))
+ self.flush_interval = int(
+ os.getenv("GCS_FLUSH_INTERVAL", GCS_DEFAULT_FLUSH_INTERVAL_SECONDS)
+ )
+ asyncio.create_task(self.periodic_flush())
+ self.flush_lock = asyncio.Lock()
+ super().__init__(
+ flush_lock=self.flush_lock,
+ batch_size=self.batch_size,
+ flush_interval=self.flush_interval,
+ )
+ AdditionalLoggingUtils.__init__(self)
+
+ if premium_user is not True:
+ raise ValueError(
+ f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
+ )
+
+ #### ASYNC ####
+ async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
+ from litellm.proxy.proxy_server import premium_user
+
+ if premium_user is not True:
+ raise ValueError(
+ f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
+ )
+ try:
+ verbose_logger.debug(
+ "GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s",
+ kwargs,
+ response_obj,
+ )
+ logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
+ "standard_logging_object", None
+ )
+ if logging_payload is None:
+ raise ValueError("standard_logging_object not found in kwargs")
+ # Add to logging queue - this will be flushed periodically
+ self.log_queue.append(
+ GCSLogQueueItem(
+ payload=logging_payload, kwargs=kwargs, response_obj=response_obj
+ )
+ )
+
+ except Exception as e:
+ verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")
+
+ async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
+ try:
+ verbose_logger.debug(
+ "GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s",
+ kwargs,
+ response_obj,
+ )
+
+ logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
+ "standard_logging_object", None
+ )
+ if logging_payload is None:
+ raise ValueError("standard_logging_object not found in kwargs")
+ # Add to logging queue - this will be flushed periodically
+ self.log_queue.append(
+ GCSLogQueueItem(
+ payload=logging_payload, kwargs=kwargs, response_obj=response_obj
+ )
+ )
+
+ except Exception as e:
+ verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")
+
+ async def async_send_batch(self):
+ """
+ Process queued logs in batch - sends logs to GCS Bucket
+
+
+ GCS Bucket does not have a Batch endpoint to batch upload logs
+
+ Instead, we
+ - collect the logs to flush every `GCS_FLUSH_INTERVAL` seconds
+ - during async_send_batch, we make 1 POST request per log to GCS Bucket
+
+ """
+ if not self.log_queue:
+ return
+
+ for log_item in self.log_queue:
+ logging_payload = log_item["payload"]
+ kwargs = log_item["kwargs"]
+ response_obj = log_item.get("response_obj", None) or {}
+
+ gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
+ kwargs
+ )
+ headers = await self.construct_request_headers(
+ vertex_instance=gcs_logging_config["vertex_instance"],
+ service_account_json=gcs_logging_config["path_service_account"],
+ )
+ bucket_name = gcs_logging_config["bucket_name"]
+ object_name = self._get_object_name(kwargs, logging_payload, response_obj)
+
+ try:
+ await self._log_json_data_on_gcs(
+ headers=headers,
+ bucket_name=bucket_name,
+ object_name=object_name,
+ logging_payload=logging_payload,
+ )
+ except Exception as e:
+ # don't let one log item fail the entire batch
+ verbose_logger.exception(
+ f"GCS Bucket error logging payload to GCS bucket: {str(e)}"
+ )
+ pass
+
+ # Clear the queue after processing
+ self.log_queue.clear()
+
+ def _get_object_name(
+ self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any
+ ) -> str:
+ """
+ Get the object name to use for the current payload
+ """
+ current_date = self._get_object_date_from_datetime(datetime.now(timezone.utc))
+ if logging_payload.get("error_str", None) is not None:
+ object_name = self._generate_failure_object_name(
+ request_date_str=current_date,
+ )
+ else:
+ object_name = self._generate_success_object_name(
+ request_date_str=current_date,
+ response_id=response_obj.get("id", ""),
+ )
+
+ # used for testing
+ _litellm_params = kwargs.get("litellm_params", None) or {}
+ _metadata = _litellm_params.get("metadata", None) or {}
+ if "gcs_log_id" in _metadata:
+ object_name = _metadata["gcs_log_id"]
+
+ return object_name
+
+ async def get_request_response_payload(
+ self,
+ request_id: str,
+ start_time_utc: Optional[datetime],
+ end_time_utc: Optional[datetime],
+ ) -> Optional[dict]:
+ """
+ Get the request and response payload for a given `request_id`
+ Tries current day, next day, and previous day until it finds the payload
+ """
+ if start_time_utc is None:
+ raise ValueError(
+ "start_time_utc is required for getting a payload from GCS Bucket"
+ )
+
+ # Try current day, next day, and previous day
+ dates_to_try = [
+ start_time_utc,
+ start_time_utc + timedelta(days=1),
+ start_time_utc - timedelta(days=1),
+ ]
+ date_str = None
+ for date in dates_to_try:
+ try:
+ date_str = self._get_object_date_from_datetime(datetime_obj=date)
+ object_name = self._generate_success_object_name(
+ request_date_str=date_str,
+ response_id=request_id,
+ )
+ encoded_object_name = quote(object_name, safe="")
+ response = await self.download_gcs_object(encoded_object_name)
+
+ if response is not None:
+ loaded_response = json.loads(response)
+ return loaded_response
+ except Exception as e:
+ verbose_logger.debug(
+ f"Failed to fetch payload for date {date_str}: {str(e)}"
+ )
+ continue
+
+ return None
+
+ def _generate_success_object_name(
+ self,
+ request_date_str: str,
+ response_id: str,
+ ) -> str:
+ return f"{request_date_str}/{response_id}"
+
+ def _generate_failure_object_name(
+ self,
+ request_date_str: str,
+ ) -> str:
+ return f"{request_date_str}/failure-{uuid.uuid4().hex}"
+
+ def _get_object_date_from_datetime(self, datetime_obj: datetime) -> str:
+ return datetime_obj.strftime("%Y-%m-%d")
+
+ async def async_health_check(self) -> IntegrationHealthCheckStatus:
+ raise NotImplementedError("GCS Bucket does not support health check")
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket_base.py b/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket_base.py
new file mode 100644
index 00000000..66995d84
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/gcs_bucket/gcs_bucket_base.py
@@ -0,0 +1,326 @@
+import json
+import os
+from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
+
+from litellm._logging import verbose_logger
+from litellm.integrations.custom_batch_logger import CustomBatchLogger
+from litellm.llms.custom_httpx.http_handler import (
+ get_async_httpx_client,
+ httpxSpecialProvider,
+)
+from litellm.types.integrations.gcs_bucket import *
+from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
+
+if TYPE_CHECKING:
+ from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
+else:
+ VertexBase = Any
+IAM_AUTH_KEY = "IAM_AUTH"
+
+
+class GCSBucketBase(CustomBatchLogger):
+ def __init__(self, bucket_name: Optional[str] = None, **kwargs) -> None:
+ self.async_httpx_client = get_async_httpx_client(
+ llm_provider=httpxSpecialProvider.LoggingCallback
+ )
+ _path_service_account = os.getenv("GCS_PATH_SERVICE_ACCOUNT")
+ _bucket_name = bucket_name or os.getenv("GCS_BUCKET_NAME")
+ self.path_service_account_json: Optional[str] = _path_service_account
+ self.BUCKET_NAME: Optional[str] = _bucket_name
+ self.vertex_instances: Dict[str, VertexBase] = {}
+ super().__init__(**kwargs)
+
+ async def construct_request_headers(
+ self,
+ service_account_json: Optional[str],
+ vertex_instance: Optional[VertexBase] = None,
+ ) -> Dict[str, str]:
+ from litellm import vertex_chat_completion
+
+ if vertex_instance is None:
+ vertex_instance = vertex_chat_completion
+
+ _auth_header, vertex_project = await vertex_instance._ensure_access_token_async(
+ credentials=service_account_json,
+ project_id=None,
+ custom_llm_provider="vertex_ai",
+ )
+
+ auth_header, _ = vertex_instance._get_token_and_url(
+ model="gcs-bucket",
+ auth_header=_auth_header,
+ vertex_credentials=service_account_json,
+ vertex_project=vertex_project,
+ vertex_location=None,
+ gemini_api_key=None,
+ stream=None,
+ custom_llm_provider="vertex_ai",
+ api_base=None,
+ )
+ verbose_logger.debug("constructed auth_header %s", auth_header)
+ headers = {
+ "Authorization": f"Bearer {auth_header}", # auth_header
+ "Content-Type": "application/json",
+ }
+
+ return headers
+
+ def sync_construct_request_headers(self) -> Dict[str, str]:
+ from litellm import vertex_chat_completion
+
+ _auth_header, vertex_project = vertex_chat_completion._ensure_access_token(
+ credentials=self.path_service_account_json,
+ project_id=None,
+ custom_llm_provider="vertex_ai",
+ )
+
+ auth_header, _ = vertex_chat_completion._get_token_and_url(
+ model="gcs-bucket",
+ auth_header=_auth_header,
+ vertex_credentials=self.path_service_account_json,
+ vertex_project=vertex_project,
+ vertex_location=None,
+ gemini_api_key=None,
+ stream=None,
+ custom_llm_provider="vertex_ai",
+ api_base=None,
+ )
+ verbose_logger.debug("constructed auth_header %s", auth_header)
+ headers = {
+ "Authorization": f"Bearer {auth_header}", # auth_header
+ "Content-Type": "application/json",
+ }
+
+ return headers
+
+ def _handle_folders_in_bucket_name(
+ self,
+ bucket_name: str,
+ object_name: str,
+ ) -> Tuple[str, str]:
+ """
+ Handles when the user passes a bucket name with a folder postfix
+
+
+ Example:
+ - Bucket name: "my-bucket/my-folder/dev"
+ - Object name: "my-object"
+ - Returns: bucket_name="my-bucket", object_name="my-folder/dev/my-object"
+
+ """
+ if "/" in bucket_name:
+ bucket_name, prefix = bucket_name.split("/", 1)
+ object_name = f"{prefix}/{object_name}"
+ return bucket_name, object_name
+ return bucket_name, object_name
+
+ async def get_gcs_logging_config(
+ self, kwargs: Optional[Dict[str, Any]] = {}
+ ) -> GCSLoggingConfig:
+ """
+ This function is used to get the GCS logging config for the GCS Bucket Logger.
+ It checks if the dynamic parameters are provided in the kwargs and uses them to get the GCS logging config.
+ If no dynamic parameters are provided, it uses the default values.
+ """
+ if kwargs is None:
+ kwargs = {}
+
+ standard_callback_dynamic_params: Optional[StandardCallbackDynamicParams] = (
+ kwargs.get("standard_callback_dynamic_params", None)
+ )
+
+ bucket_name: str
+ path_service_account: Optional[str]
+ if standard_callback_dynamic_params is not None:
+ verbose_logger.debug("Using dynamic GCS logging")
+ verbose_logger.debug(
+ "standard_callback_dynamic_params: %s", standard_callback_dynamic_params
+ )
+
+ _bucket_name: Optional[str] = (
+ standard_callback_dynamic_params.get("gcs_bucket_name", None)
+ or self.BUCKET_NAME
+ )
+ _path_service_account: Optional[str] = (
+ standard_callback_dynamic_params.get("gcs_path_service_account", None)
+ or self.path_service_account_json
+ )
+
+ if _bucket_name is None:
+ raise ValueError(
+ "GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment."
+ )
+ bucket_name = _bucket_name
+ path_service_account = _path_service_account
+ vertex_instance = await self.get_or_create_vertex_instance(
+ credentials=path_service_account
+ )
+ else:
+ # If no dynamic parameters, use the default instance
+ if self.BUCKET_NAME is None:
+ raise ValueError(
+ "GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment."
+ )
+ bucket_name = self.BUCKET_NAME
+ path_service_account = self.path_service_account_json
+ vertex_instance = await self.get_or_create_vertex_instance(
+ credentials=path_service_account
+ )
+
+ return GCSLoggingConfig(
+ bucket_name=bucket_name,
+ vertex_instance=vertex_instance,
+ path_service_account=path_service_account,
+ )
+
+ async def get_or_create_vertex_instance(
+ self, credentials: Optional[str]
+ ) -> VertexBase:
+ """
+ This function is used to get the Vertex instance for the GCS Bucket Logger.
+ It checks if the Vertex instance is already created and cached, if not it creates a new instance and caches it.
+ """
+ from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
+
+ _in_memory_key = self._get_in_memory_key_for_vertex_instance(credentials)
+ if _in_memory_key not in self.vertex_instances:
+ vertex_instance = VertexBase()
+ await vertex_instance._ensure_access_token_async(
+ credentials=credentials,
+ project_id=None,
+ custom_llm_provider="vertex_ai",
+ )
+ self.vertex_instances[_in_memory_key] = vertex_instance
+ return self.vertex_instances[_in_memory_key]
+
+ def _get_in_memory_key_for_vertex_instance(self, credentials: Optional[str]) -> str:
+ """
+ Returns key to use for caching the Vertex instance in-memory.
+
+ When using Vertex with Key based logging, we need to cache the Vertex instance in-memory.
+
+ - If a credentials string is provided, it is used as the key.
+ - If no credentials string is provided, "IAM_AUTH" is used as the key.
+ """
+ return credentials or IAM_AUTH_KEY
+
+ async def download_gcs_object(self, object_name: str, **kwargs):
+ """
+ Download an object from GCS.
+
+ https://cloud.google.com/storage/docs/downloading-objects#download-object-json
+ """
+ try:
+ gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
+ kwargs=kwargs
+ )
+ headers = await self.construct_request_headers(
+ vertex_instance=gcs_logging_config["vertex_instance"],
+ service_account_json=gcs_logging_config["path_service_account"],
+ )
+ bucket_name = gcs_logging_config["bucket_name"]
+ bucket_name, object_name = self._handle_folders_in_bucket_name(
+ bucket_name=bucket_name,
+ object_name=object_name,
+ )
+
+ url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}?alt=media"
+
+ # Send the GET request to download the object
+ response = await self.async_httpx_client.get(url=url, headers=headers)
+
+ if response.status_code != 200:
+ verbose_logger.error(
+ "GCS object download error: %s", str(response.text)
+ )
+ return None
+
+ verbose_logger.debug(
+ "GCS object download response status code: %s", response.status_code
+ )
+
+ # Return the content of the downloaded object
+ return response.content
+
+ except Exception as e:
+ verbose_logger.error("GCS object download error: %s", str(e))
+ return None
+
+ async def delete_gcs_object(self, object_name: str, **kwargs):
+ """
+ Delete an object from GCS.
+ """
+ try:
+ gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
+ kwargs=kwargs
+ )
+ headers = await self.construct_request_headers(
+ vertex_instance=gcs_logging_config["vertex_instance"],
+ service_account_json=gcs_logging_config["path_service_account"],
+ )
+ bucket_name = gcs_logging_config["bucket_name"]
+ bucket_name, object_name = self._handle_folders_in_bucket_name(
+ bucket_name=bucket_name,
+ object_name=object_name,
+ )
+
+ url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}"
+
+ # Send the DELETE request to delete the object
+ response = await self.async_httpx_client.delete(url=url, headers=headers)
+
+ if (response.status_code != 200) or (response.status_code != 204):
+ verbose_logger.error(
+ "GCS object delete error: %s, status code: %s",
+ str(response.text),
+ response.status_code,
+ )
+ return None
+
+ verbose_logger.debug(
+ "GCS object delete response status code: %s, response: %s",
+ response.status_code,
+ response.text,
+ )
+
+ # Return the content of the downloaded object
+ return response.text
+
+ except Exception as e:
+ verbose_logger.error("GCS object download error: %s", str(e))
+ return None
+
+ async def _log_json_data_on_gcs(
+ self,
+ headers: Dict[str, str],
+ bucket_name: str,
+ object_name: str,
+ logging_payload: Union[StandardLoggingPayload, str],
+ ):
+ """
+ Helper function to make POST request to GCS Bucket in the specified bucket.
+ """
+ if isinstance(logging_payload, str):
+ json_logged_payload = logging_payload
+ else:
+ json_logged_payload = json.dumps(logging_payload, default=str)
+
+ bucket_name, object_name = self._handle_folders_in_bucket_name(
+ bucket_name=bucket_name,
+ object_name=object_name,
+ )
+
+ response = await self.async_httpx_client.post(
+ headers=headers,
+ url=f"https://storage.googleapis.com/upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}",
+ data=json_logged_payload,
+ )
+
+ if response.status_code != 200:
+ verbose_logger.error("GCS Bucket logging error: %s", str(response.text))
+
+ verbose_logger.debug("GCS Bucket response %s", response)
+ verbose_logger.debug("GCS Bucket status code %s", response.status_code)
+ verbose_logger.debug("GCS Bucket response.text %s", response.text)
+
+ return response.json()