aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/fine_tuning
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/fine_tuning
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/fine_tuning')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/fine_tuning/main.py760
1 files changed, 760 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/fine_tuning/main.py b/.venv/lib/python3.12/site-packages/litellm/fine_tuning/main.py
new file mode 100644
index 00000000..b726a394
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/fine_tuning/main.py
@@ -0,0 +1,760 @@
+"""
+Main File for Fine Tuning API implementation
+
+https://platform.openai.com/docs/api-reference/fine-tuning
+
+- fine_tuning.jobs.create()
+- fine_tuning.jobs.list()
+- client.fine_tuning.jobs.list_events()
+"""
+
+import asyncio
+import contextvars
+import os
+from functools import partial
+from typing import Any, Coroutine, Dict, Literal, Optional, Union
+
+import httpx
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.llms.azure.fine_tuning.handler import AzureOpenAIFineTuningAPI
+from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI
+from litellm.llms.vertex_ai.fine_tuning.handler import VertexFineTuningAPI
+from litellm.secret_managers.main import get_secret_str
+from litellm.types.llms.openai import (
+ FineTuningJob,
+ FineTuningJobCreate,
+ Hyperparameters,
+)
+from litellm.types.router import *
+from litellm.utils import client, supports_httpx_timeout
+
+####### ENVIRONMENT VARIABLES ###################
+openai_fine_tuning_apis_instance = OpenAIFineTuningAPI()
+azure_fine_tuning_apis_instance = AzureOpenAIFineTuningAPI()
+vertex_fine_tuning_apis_instance = VertexFineTuningAPI()
+#################################################
+
+
+@client
+async def acreate_fine_tuning_job(
+ model: str,
+ training_file: str,
+ hyperparameters: Optional[dict] = {},
+ suffix: Optional[str] = None,
+ validation_file: Optional[str] = None,
+ integrations: Optional[List[str]] = None,
+ seed: Optional[int] = None,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+) -> FineTuningJob:
+ """
+ Async: Creates and executes a batch from an uploaded file of request
+
+ """
+ verbose_logger.debug(
+ "inside acreate_fine_tuning_job model=%s and kwargs=%s", model, kwargs
+ )
+ try:
+ loop = asyncio.get_event_loop()
+ kwargs["acreate_fine_tuning_job"] = True
+
+ # Use a partial function to pass your keyword arguments
+ func = partial(
+ create_fine_tuning_job,
+ model,
+ training_file,
+ hyperparameters,
+ suffix,
+ validation_file,
+ integrations,
+ seed,
+ custom_llm_provider,
+ extra_headers,
+ extra_body,
+ **kwargs,
+ )
+
+ # Add the context to the function
+ ctx = contextvars.copy_context()
+ func_with_context = partial(ctx.run, func)
+ init_response = await loop.run_in_executor(None, func_with_context)
+ if asyncio.iscoroutine(init_response):
+ response = await init_response
+ else:
+ response = init_response # type: ignore
+ return response
+ except Exception as e:
+ raise e
+
+
+@client
+def create_fine_tuning_job(
+ model: str,
+ training_file: str,
+ hyperparameters: Optional[dict] = {},
+ suffix: Optional[str] = None,
+ validation_file: Optional[str] = None,
+ integrations: Optional[List[str]] = None,
+ seed: Optional[int] = None,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
+ """
+ Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
+
+ Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete
+
+ """
+ try:
+ _is_async = kwargs.pop("acreate_fine_tuning_job", False) is True
+ optional_params = GenericLiteLLMParams(**kwargs)
+
+ # handle hyperparameters
+ hyperparameters = hyperparameters or {} # original hyperparameters
+ _oai_hyperparameters: Hyperparameters = Hyperparameters(
+ **hyperparameters
+ ) # Typed Hyperparameters for OpenAI Spec
+ ### TIMEOUT LOGIC ###
+ timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
+ # set timeout for 10 minutes by default
+
+ if (
+ timeout is not None
+ and isinstance(timeout, httpx.Timeout)
+ and supports_httpx_timeout(custom_llm_provider) is False
+ ):
+ read_timeout = timeout.read or 600
+ timeout = read_timeout # default 10 min timeout
+ elif timeout is not None and not isinstance(timeout, httpx.Timeout):
+ timeout = float(timeout) # type: ignore
+ elif timeout is None:
+ timeout = 600.0
+
+ # OpenAI
+ if custom_llm_provider == "openai":
+
+ # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
+ api_base = (
+ optional_params.api_base
+ or litellm.api_base
+ or os.getenv("OPENAI_API_BASE")
+ or "https://api.openai.com/v1"
+ )
+ organization = (
+ optional_params.organization
+ or litellm.organization
+ or os.getenv("OPENAI_ORGANIZATION", None)
+ or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
+ )
+ # set API KEY
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
+ or litellm.openai_key
+ or os.getenv("OPENAI_API_KEY")
+ )
+
+ create_fine_tuning_job_data = FineTuningJobCreate(
+ model=model,
+ training_file=training_file,
+ hyperparameters=_oai_hyperparameters,
+ suffix=suffix,
+ validation_file=validation_file,
+ integrations=integrations,
+ seed=seed,
+ )
+
+ create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump(
+ exclude_none=True
+ )
+
+ response = openai_fine_tuning_apis_instance.create_fine_tuning_job(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=optional_params.api_version,
+ organization=organization,
+ create_fine_tuning_job_data=create_fine_tuning_job_data_dict,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ client=kwargs.get(
+ "client", None
+ ), # note, when we add this to `GenericLiteLLMParams` it impacts a lot of other tests + linting
+ )
+ # Azure OpenAI
+ elif custom_llm_provider == "azure":
+ api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore
+
+ api_version = (
+ optional_params.api_version
+ or litellm.api_version
+ or get_secret_str("AZURE_API_VERSION")
+ ) # type: ignore
+
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key
+ or litellm.azure_key
+ or get_secret_str("AZURE_OPENAI_API_KEY")
+ or get_secret_str("AZURE_API_KEY")
+ ) # type: ignore
+
+ extra_body = optional_params.get("extra_body", {})
+ if extra_body is not None:
+ extra_body.pop("azure_ad_token", None)
+ else:
+ get_secret_str("AZURE_AD_TOKEN") # type: ignore
+ create_fine_tuning_job_data = FineTuningJobCreate(
+ model=model,
+ training_file=training_file,
+ hyperparameters=_oai_hyperparameters,
+ suffix=suffix,
+ validation_file=validation_file,
+ integrations=integrations,
+ seed=seed,
+ )
+
+ create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump(
+ exclude_none=True
+ )
+
+ response = azure_fine_tuning_apis_instance.create_fine_tuning_job(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=api_version,
+ create_fine_tuning_job_data=create_fine_tuning_job_data_dict,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ organization=optional_params.organization,
+ )
+ elif custom_llm_provider == "vertex_ai":
+ api_base = optional_params.api_base or ""
+ vertex_ai_project = (
+ optional_params.vertex_project
+ or litellm.vertex_project
+ or get_secret_str("VERTEXAI_PROJECT")
+ )
+ vertex_ai_location = (
+ optional_params.vertex_location
+ or litellm.vertex_location
+ or get_secret_str("VERTEXAI_LOCATION")
+ )
+ vertex_credentials = optional_params.vertex_credentials or get_secret_str(
+ "VERTEXAI_CREDENTIALS"
+ )
+ create_fine_tuning_job_data = FineTuningJobCreate(
+ model=model,
+ training_file=training_file,
+ hyperparameters=_oai_hyperparameters,
+ suffix=suffix,
+ validation_file=validation_file,
+ integrations=integrations,
+ seed=seed,
+ )
+ response = vertex_fine_tuning_apis_instance.create_fine_tuning_job(
+ _is_async=_is_async,
+ create_fine_tuning_job_data=create_fine_tuning_job_data,
+ vertex_credentials=vertex_credentials,
+ vertex_project=vertex_ai_project,
+ vertex_location=vertex_ai_location,
+ timeout=timeout,
+ api_base=api_base,
+ kwargs=kwargs,
+ original_hyperparameters=hyperparameters,
+ )
+ else:
+ raise litellm.exceptions.BadRequestError(
+ message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
+ custom_llm_provider
+ ),
+ model="n/a",
+ llm_provider=custom_llm_provider,
+ response=httpx.Response(
+ status_code=400,
+ content="Unsupported provider",
+ request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
+ ),
+ )
+ return response
+ except Exception as e:
+ verbose_logger.error("got exception in create_fine_tuning_job=%s", str(e))
+ raise e
+
+
+async def acancel_fine_tuning_job(
+ fine_tuning_job_id: str,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+) -> FineTuningJob:
+ """
+ Async: Immediately cancel a fine-tune job.
+ """
+ try:
+ loop = asyncio.get_event_loop()
+ kwargs["acancel_fine_tuning_job"] = True
+
+ # Use a partial function to pass your keyword arguments
+ func = partial(
+ cancel_fine_tuning_job,
+ fine_tuning_job_id,
+ custom_llm_provider,
+ extra_headers,
+ extra_body,
+ **kwargs,
+ )
+
+ # Add the context to the function
+ ctx = contextvars.copy_context()
+ func_with_context = partial(ctx.run, func)
+ init_response = await loop.run_in_executor(None, func_with_context)
+ if asyncio.iscoroutine(init_response):
+ response = await init_response
+ else:
+ response = init_response # type: ignore
+ return response
+ except Exception as e:
+ raise e
+
+
+def cancel_fine_tuning_job(
+ fine_tuning_job_id: str,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
+ """
+ Immediately cancel a fine-tune job.
+
+ Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete
+
+ """
+ try:
+ optional_params = GenericLiteLLMParams(**kwargs)
+ ### TIMEOUT LOGIC ###
+ timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
+ # set timeout for 10 minutes by default
+
+ if (
+ timeout is not None
+ and isinstance(timeout, httpx.Timeout)
+ and supports_httpx_timeout(custom_llm_provider) is False
+ ):
+ read_timeout = timeout.read or 600
+ timeout = read_timeout # default 10 min timeout
+ elif timeout is not None and not isinstance(timeout, httpx.Timeout):
+ timeout = float(timeout) # type: ignore
+ elif timeout is None:
+ timeout = 600.0
+
+ _is_async = kwargs.pop("acancel_fine_tuning_job", False) is True
+
+ # OpenAI
+ if custom_llm_provider == "openai":
+
+ # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
+ api_base = (
+ optional_params.api_base
+ or litellm.api_base
+ or os.getenv("OPENAI_API_BASE")
+ or "https://api.openai.com/v1"
+ )
+ organization = (
+ optional_params.organization
+ or litellm.organization
+ or os.getenv("OPENAI_ORGANIZATION", None)
+ or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
+ )
+ # set API KEY
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
+ or litellm.openai_key
+ or os.getenv("OPENAI_API_KEY")
+ )
+
+ response = openai_fine_tuning_apis_instance.cancel_fine_tuning_job(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=optional_params.api_version,
+ organization=organization,
+ fine_tuning_job_id=fine_tuning_job_id,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ client=kwargs.get("client", None),
+ )
+ # Azure OpenAI
+ elif custom_llm_provider == "azure":
+ api_base = optional_params.api_base or litellm.api_base or get_secret("AZURE_API_BASE") # type: ignore
+
+ api_version = (
+ optional_params.api_version
+ or litellm.api_version
+ or get_secret_str("AZURE_API_VERSION")
+ ) # type: ignore
+
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key
+ or litellm.azure_key
+ or get_secret_str("AZURE_OPENAI_API_KEY")
+ or get_secret_str("AZURE_API_KEY")
+ ) # type: ignore
+
+ extra_body = optional_params.get("extra_body", {})
+ if extra_body is not None:
+ extra_body.pop("azure_ad_token", None)
+ else:
+ get_secret_str("AZURE_AD_TOKEN") # type: ignore
+
+ response = azure_fine_tuning_apis_instance.cancel_fine_tuning_job(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=api_version,
+ fine_tuning_job_id=fine_tuning_job_id,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ organization=optional_params.organization,
+ )
+ else:
+ raise litellm.exceptions.BadRequestError(
+ message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
+ custom_llm_provider
+ ),
+ model="n/a",
+ llm_provider=custom_llm_provider,
+ response=httpx.Response(
+ status_code=400,
+ content="Unsupported provider",
+ request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
+ ),
+ )
+ return response
+ except Exception as e:
+ raise e
+
+
+async def alist_fine_tuning_jobs(
+ after: Optional[str] = None,
+ limit: Optional[int] = None,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+):
+ """
+ Async: List your organization's fine-tuning jobs
+ """
+ try:
+ loop = asyncio.get_event_loop()
+ kwargs["alist_fine_tuning_jobs"] = True
+
+ # Use a partial function to pass your keyword arguments
+ func = partial(
+ list_fine_tuning_jobs,
+ after,
+ limit,
+ custom_llm_provider,
+ extra_headers,
+ extra_body,
+ **kwargs,
+ )
+
+ # Add the context to the function
+ ctx = contextvars.copy_context()
+ func_with_context = partial(ctx.run, func)
+ init_response = await loop.run_in_executor(None, func_with_context)
+ if asyncio.iscoroutine(init_response):
+ response = await init_response
+ else:
+ response = init_response # type: ignore
+ return response
+ except Exception as e:
+ raise e
+
+
+def list_fine_tuning_jobs(
+ after: Optional[str] = None,
+ limit: Optional[int] = None,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+):
+ """
+ List your organization's fine-tuning jobs
+
+ Params:
+
+ - after: Optional[str] = None, Identifier for the last job from the previous pagination request.
+ - limit: Optional[int] = None, Number of fine-tuning jobs to retrieve. Defaults to 20
+ """
+ try:
+ optional_params = GenericLiteLLMParams(**kwargs)
+ ### TIMEOUT LOGIC ###
+ timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
+ # set timeout for 10 minutes by default
+
+ if (
+ timeout is not None
+ and isinstance(timeout, httpx.Timeout)
+ and supports_httpx_timeout(custom_llm_provider) is False
+ ):
+ read_timeout = timeout.read or 600
+ timeout = read_timeout # default 10 min timeout
+ elif timeout is not None and not isinstance(timeout, httpx.Timeout):
+ timeout = float(timeout) # type: ignore
+ elif timeout is None:
+ timeout = 600.0
+
+ _is_async = kwargs.pop("alist_fine_tuning_jobs", False) is True
+
+ # OpenAI
+ if custom_llm_provider == "openai":
+
+ # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
+ api_base = (
+ optional_params.api_base
+ or litellm.api_base
+ or os.getenv("OPENAI_API_BASE")
+ or "https://api.openai.com/v1"
+ )
+ organization = (
+ optional_params.organization
+ or litellm.organization
+ or os.getenv("OPENAI_ORGANIZATION", None)
+ or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
+ )
+ # set API KEY
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
+ or litellm.openai_key
+ or os.getenv("OPENAI_API_KEY")
+ )
+
+ response = openai_fine_tuning_apis_instance.list_fine_tuning_jobs(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=optional_params.api_version,
+ organization=organization,
+ after=after,
+ limit=limit,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ client=kwargs.get("client", None),
+ )
+ # Azure OpenAI
+ elif custom_llm_provider == "azure":
+ api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore
+
+ api_version = (
+ optional_params.api_version
+ or litellm.api_version
+ or get_secret_str("AZURE_API_VERSION")
+ ) # type: ignore
+
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key
+ or litellm.azure_key
+ or get_secret_str("AZURE_OPENAI_API_KEY")
+ or get_secret_str("AZURE_API_KEY")
+ ) # type: ignore
+
+ extra_body = optional_params.get("extra_body", {})
+ if extra_body is not None:
+ extra_body.pop("azure_ad_token", None)
+ else:
+ get_secret("AZURE_AD_TOKEN") # type: ignore
+
+ response = azure_fine_tuning_apis_instance.list_fine_tuning_jobs(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=api_version,
+ after=after,
+ limit=limit,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ organization=optional_params.organization,
+ )
+ else:
+ raise litellm.exceptions.BadRequestError(
+ message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
+ custom_llm_provider
+ ),
+ model="n/a",
+ llm_provider=custom_llm_provider,
+ response=httpx.Response(
+ status_code=400,
+ content="Unsupported provider",
+ request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
+ ),
+ )
+ return response
+ except Exception as e:
+ raise e
+
+
+async def aretrieve_fine_tuning_job(
+ fine_tuning_job_id: str,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+) -> FineTuningJob:
+ """
+ Async: Get info about a fine-tuning job.
+ """
+ try:
+ loop = asyncio.get_event_loop()
+ kwargs["aretrieve_fine_tuning_job"] = True
+
+ # Use a partial function to pass your keyword arguments
+ func = partial(
+ retrieve_fine_tuning_job,
+ fine_tuning_job_id,
+ custom_llm_provider,
+ extra_headers,
+ extra_body,
+ **kwargs,
+ )
+
+ # Add the context to the function
+ ctx = contextvars.copy_context()
+ func_with_context = partial(ctx.run, func)
+ init_response = await loop.run_in_executor(None, func_with_context)
+ if asyncio.iscoroutine(init_response):
+ response = await init_response
+ else:
+ response = init_response # type: ignore
+ return response
+ except Exception as e:
+ raise e
+
+
+def retrieve_fine_tuning_job(
+ fine_tuning_job_id: str,
+ custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
+ extra_headers: Optional[Dict[str, str]] = None,
+ extra_body: Optional[Dict[str, str]] = None,
+ **kwargs,
+) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
+ """
+ Get info about a fine-tuning job.
+ """
+ try:
+ optional_params = GenericLiteLLMParams(**kwargs)
+ ### TIMEOUT LOGIC ###
+ timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
+ # set timeout for 10 minutes by default
+
+ if (
+ timeout is not None
+ and isinstance(timeout, httpx.Timeout)
+ and supports_httpx_timeout(custom_llm_provider) is False
+ ):
+ read_timeout = timeout.read or 600
+ timeout = read_timeout # default 10 min timeout
+ elif timeout is not None and not isinstance(timeout, httpx.Timeout):
+ timeout = float(timeout) # type: ignore
+ elif timeout is None:
+ timeout = 600.0
+
+ _is_async = kwargs.pop("aretrieve_fine_tuning_job", False) is True
+
+ # OpenAI
+ if custom_llm_provider == "openai":
+ api_base = (
+ optional_params.api_base
+ or litellm.api_base
+ or os.getenv("OPENAI_API_BASE")
+ or "https://api.openai.com/v1"
+ )
+ organization = (
+ optional_params.organization
+ or litellm.organization
+ or os.getenv("OPENAI_ORGANIZATION", None)
+ or None
+ )
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key
+ or litellm.openai_key
+ or os.getenv("OPENAI_API_KEY")
+ )
+
+ response = openai_fine_tuning_apis_instance.retrieve_fine_tuning_job(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=optional_params.api_version,
+ organization=organization,
+ fine_tuning_job_id=fine_tuning_job_id,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ client=kwargs.get("client", None),
+ )
+ # Azure OpenAI
+ elif custom_llm_provider == "azure":
+ api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore
+
+ api_version = (
+ optional_params.api_version
+ or litellm.api_version
+ or get_secret_str("AZURE_API_VERSION")
+ ) # type: ignore
+
+ api_key = (
+ optional_params.api_key
+ or litellm.api_key
+ or litellm.azure_key
+ or get_secret_str("AZURE_OPENAI_API_KEY")
+ or get_secret_str("AZURE_API_KEY")
+ ) # type: ignore
+
+ extra_body = optional_params.get("extra_body", {})
+ if extra_body is not None:
+ extra_body.pop("azure_ad_token", None)
+ else:
+ get_secret_str("AZURE_AD_TOKEN") # type: ignore
+
+ response = azure_fine_tuning_apis_instance.retrieve_fine_tuning_job(
+ api_base=api_base,
+ api_key=api_key,
+ api_version=api_version,
+ fine_tuning_job_id=fine_tuning_job_id,
+ timeout=timeout,
+ max_retries=optional_params.max_retries,
+ _is_async=_is_async,
+ organization=optional_params.organization,
+ )
+ else:
+ raise litellm.exceptions.BadRequestError(
+ message="LiteLLM doesn't support {} for 'retrieve_fine_tuning_job'. Only 'openai' and 'azure' are supported.".format(
+ custom_llm_provider
+ ),
+ model="n/a",
+ llm_provider=custom_llm_provider,
+ response=httpx.Response(
+ status_code=400,
+ content="Unsupported provider",
+ request=httpx.Request(method="retrieve_fine_tuning_job", url="https://github.com/BerriAI/litellm"), # type: ignore
+ ),
+ )
+ return response
+ except Exception as e:
+ raise e