aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py')
-rw-r--r--.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py750
1 files changed, 750 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py b/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py
new file mode 100644
index 00000000..18366ca1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py
@@ -0,0 +1,750 @@
+import copy
+from collections import defaultdict
+from dataclasses import dataclass
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+from huggingface_hub.utils import logging, yaml_dump
+
+
+logger = logging.get_logger(__name__)
+
+
+@dataclass
+class EvalResult:
+ """
+ Flattened representation of individual evaluation results found in model-index of Model Cards.
+
+ For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.
+
+ Args:
+ task_type (`str`):
+ The task identifier. Example: "image-classification".
+ dataset_type (`str`):
+ The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
+ dataset_name (`str`):
+ A pretty name for the dataset. Example: "Common Voice (French)".
+ metric_type (`str`):
+ The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
+ metric_value (`Any`):
+ The metric value. Example: 0.9 or "20.0 ± 1.2".
+ task_name (`str`, *optional*):
+ A pretty name for the task. Example: "Speech Recognition".
+ dataset_config (`str`, *optional*):
+ The name of the dataset configuration used in `load_dataset()`.
+ Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
+ https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
+ dataset_split (`str`, *optional*):
+ The split used in `load_dataset()`. Example: "test".
+ dataset_revision (`str`, *optional*):
+ The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
+ Example: 5503434ddd753f426f4b38109466949a1217c2bb
+ dataset_args (`Dict[str, Any]`, *optional*):
+ The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
+ metric_name (`str`, *optional*):
+ A pretty name for the metric. Example: "Test WER".
+ metric_config (`str`, *optional*):
+ The name of the metric configuration used in `load_metric()`.
+ Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
+ See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
+ metric_args (`Dict[str, Any]`, *optional*):
+ The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
+ verified (`bool`, *optional*):
+ Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
+ verify_token (`str`, *optional*):
+ A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
+ source_name (`str`, *optional*):
+ The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
+ source_url (`str`, *optional*):
+ The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard".
+ """
+
+ # Required
+
+ # The task identifier
+ # Example: automatic-speech-recognition
+ task_type: str
+
+ # The dataset identifier
+ # Example: common_voice. Use dataset id from https://hf.co/datasets
+ dataset_type: str
+
+ # A pretty name for the dataset.
+ # Example: Common Voice (French)
+ dataset_name: str
+
+ # The metric identifier
+ # Example: wer. Use metric id from https://hf.co/metrics
+ metric_type: str
+
+ # Value of the metric.
+ # Example: 20.0 or "20.0 ± 1.2"
+ metric_value: Any
+
+ # Optional
+
+ # A pretty name for the task.
+ # Example: Speech Recognition
+ task_name: Optional[str] = None
+
+ # The name of the dataset configuration used in `load_dataset()`.
+ # Example: fr in `load_dataset("common_voice", "fr")`.
+ # See the `datasets` docs for more info:
+ # https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
+ dataset_config: Optional[str] = None
+
+ # The split used in `load_dataset()`.
+ # Example: test
+ dataset_split: Optional[str] = None
+
+ # The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
+ # Example: 5503434ddd753f426f4b38109466949a1217c2bb
+ dataset_revision: Optional[str] = None
+
+ # The arguments passed during `Metric.compute()`.
+ # Example for `bleu`: max_order: 4
+ dataset_args: Optional[Dict[str, Any]] = None
+
+ # A pretty name for the metric.
+ # Example: Test WER
+ metric_name: Optional[str] = None
+
+ # The name of the metric configuration used in `load_metric()`.
+ # Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
+ # See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
+ metric_config: Optional[str] = None
+
+ # The arguments passed during `Metric.compute()`.
+ # Example for `bleu`: max_order: 4
+ metric_args: Optional[Dict[str, Any]] = None
+
+ # Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
+ verified: Optional[bool] = None
+
+ # A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
+ verify_token: Optional[str] = None
+
+ # The name of the source of the evaluation result.
+ # Example: Open LLM Leaderboard
+ source_name: Optional[str] = None
+
+ # The URL of the source of the evaluation result.
+ # Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
+ source_url: Optional[str] = None
+
+ @property
+ def unique_identifier(self) -> tuple:
+ """Returns a tuple that uniquely identifies this evaluation."""
+ return (
+ self.task_type,
+ self.dataset_type,
+ self.dataset_config,
+ self.dataset_split,
+ self.dataset_revision,
+ )
+
+ def is_equal_except_value(self, other: "EvalResult") -> bool:
+ """
+ Return True if `self` and `other` describe exactly the same metric but with a
+ different value.
+ """
+ for key, _ in self.__dict__.items():
+ if key == "metric_value":
+ continue
+ # For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
+ # so we exclude it here in the comparison.
+ if key != "verify_token" and getattr(self, key) != getattr(other, key):
+ return False
+ return True
+
+ def __post_init__(self) -> None:
+ if self.source_name is not None and self.source_url is None:
+ raise ValueError("If `source_name` is provided, `source_url` must also be provided.")
+
+
+@dataclass
+class CardData:
+ """Structure containing metadata from a RepoCard.
+
+ [`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].
+
+ Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
+ (example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
+ inherit from `dict` to allow this export step.
+ """
+
+ def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
+ self.__dict__.update(kwargs)
+
+ def to_dict(self):
+ """Converts CardData to a dict.
+
+ Returns:
+ `dict`: CardData represented as a dictionary ready to be dumped to a YAML
+ block for inclusion in a README.md file.
+ """
+
+ data_dict = copy.deepcopy(self.__dict__)
+ self._to_dict(data_dict)
+ return {key: value for key, value in data_dict.items() if value is not None}
+
+ def _to_dict(self, data_dict):
+ """Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.
+
+ Args:
+ data_dict (`dict`): The raw dict representation of the card data.
+ """
+ pass
+
+ def to_yaml(self, line_break=None, original_order: Optional[List[str]] = None) -> str:
+ """Dumps CardData to a YAML block for inclusion in a README.md file.
+
+ Args:
+ line_break (str, *optional*):
+ The line break to use when dumping to yaml.
+
+ Returns:
+ `str`: CardData represented as a YAML block.
+ """
+ if original_order:
+ self.__dict__ = {
+ k: self.__dict__[k]
+ for k in original_order + list(set(self.__dict__.keys()) - set(original_order))
+ if k in self.__dict__
+ }
+ return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()
+
+ def __repr__(self):
+ return repr(self.__dict__)
+
+ def __str__(self):
+ return self.to_yaml()
+
+ def get(self, key: str, default: Any = None) -> Any:
+ """Get value for a given metadata key."""
+ value = self.__dict__.get(key)
+ return default if value is None else value
+
+ def pop(self, key: str, default: Any = None) -> Any:
+ """Pop value for a given metadata key."""
+ return self.__dict__.pop(key, default)
+
+ def __getitem__(self, key: str) -> Any:
+ """Get value for a given metadata key."""
+ return self.__dict__[key]
+
+ def __setitem__(self, key: str, value: Any) -> None:
+ """Set value for a given metadata key."""
+ self.__dict__[key] = value
+
+ def __contains__(self, key: str) -> bool:
+ """Check if a given metadata key is set."""
+ return key in self.__dict__
+
+ def __len__(self) -> int:
+ """Return the number of metadata keys set."""
+ return len(self.__dict__)
+
+
+class ModelCardData(CardData):
+ """Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
+
+ Args:
+ base_model (`str` or `List[str]`, *optional*):
+ The identifier of the base model from which the model derives. This is applicable for example if your model is a
+ fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs
+ if your model derives from multiple models). Defaults to None.
+ datasets (`Union[str, List[str]]`, *optional*):
+ Dataset or list of datasets that were used to train this model. Should be a dataset ID
+ found on https://hf.co/datasets. Defaults to None.
+ eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
+ List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
+ `model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
+ language (`Union[str, List[str]]`, *optional*):
+ Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
+ 639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
+ library_name (`str`, *optional*):
+ Name of library used by this model. Example: keras or any library from
+ https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
+ Defaults to None.
+ license (`str`, *optional*):
+ License of this model. Example: apache-2.0 or any license from
+ https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
+ license_name (`str`, *optional*):
+ Name of the license of this model. Defaults to None. To be used in conjunction with `license_link`.
+ Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a name. In that case, use `license` instead.
+ license_link (`str`, *optional*):
+ Link to the license of this model. Defaults to None. To be used in conjunction with `license_name`.
+ Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a link. In that case, use `license` instead.
+ metrics (`List[str]`, *optional*):
+ List of metrics used to evaluate this model. Should be a metric name that can be found
+ at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
+ model_name (`str`, *optional*):
+ A name for this model. It is used along with
+ `eval_results` to construct the `model-index` within the card's metadata. The name
+ you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
+ then the repo name is used as a default. Defaults to None.
+ pipeline_tag (`str`, *optional*):
+ The pipeline tag associated with the model. Example: "text-classification".
+ tags (`List[str]`, *optional*):
+ List of tags to add to your model that can be used when filtering on the Hugging
+ Face Hub. Defaults to None.
+ ignore_metadata_errors (`str`):
+ If True, errors while parsing the metadata section will be ignored. Some information might be lost during
+ the process. Use it at your own risk.
+ kwargs (`dict`, *optional*):
+ Additional metadata that will be added to the model card. Defaults to None.
+
+ Example:
+ ```python
+ >>> from huggingface_hub import ModelCardData
+ >>> card_data = ModelCardData(
+ ... language="en",
+ ... license="mit",
+ ... library_name="timm",
+ ... tags=['image-classification', 'resnet'],
+ ... )
+ >>> card_data.to_dict()
+ {'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
+
+ ```
+ """
+
+ def __init__(
+ self,
+ *,
+ base_model: Optional[Union[str, List[str]]] = None,
+ datasets: Optional[Union[str, List[str]]] = None,
+ eval_results: Optional[List[EvalResult]] = None,
+ language: Optional[Union[str, List[str]]] = None,
+ library_name: Optional[str] = None,
+ license: Optional[str] = None,
+ license_name: Optional[str] = None,
+ license_link: Optional[str] = None,
+ metrics: Optional[List[str]] = None,
+ model_name: Optional[str] = None,
+ pipeline_tag: Optional[str] = None,
+ tags: Optional[List[str]] = None,
+ ignore_metadata_errors: bool = False,
+ **kwargs,
+ ):
+ self.base_model = base_model
+ self.datasets = datasets
+ self.eval_results = eval_results
+ self.language = language
+ self.library_name = library_name
+ self.license = license
+ self.license_name = license_name
+ self.license_link = license_link
+ self.metrics = metrics
+ self.model_name = model_name
+ self.pipeline_tag = pipeline_tag
+ self.tags = _to_unique_list(tags)
+
+ model_index = kwargs.pop("model-index", None)
+ if model_index:
+ try:
+ model_name, eval_results = model_index_to_eval_results(model_index)
+ self.model_name = model_name
+ self.eval_results = eval_results
+ except (KeyError, TypeError) as error:
+ if ignore_metadata_errors:
+ logger.warning("Invalid model-index. Not loading eval results into CardData.")
+ else:
+ raise ValueError(
+ f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
+ " `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
+ " some information will be lost. Use it at your own risk."
+ )
+
+ super().__init__(**kwargs)
+
+ if self.eval_results:
+ if isinstance(self.eval_results, EvalResult):
+ self.eval_results = [self.eval_results]
+ if self.model_name is None:
+ raise ValueError("Passing `eval_results` requires `model_name` to be set.")
+
+ def _to_dict(self, data_dict):
+ """Format the internal data dict. In this case, we convert eval results to a valid model index"""
+ if self.eval_results is not None:
+ data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
+ del data_dict["eval_results"], data_dict["model_name"]
+
+
+class DatasetCardData(CardData):
+ """Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
+
+ Args:
+ language (`List[str]`, *optional*):
+ Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
+ 639-3 code (two/three letters), or a special value like "code", "multilingual".
+ license (`Union[str, List[str]]`, *optional*):
+ License(s) of this dataset. Example: apache-2.0 or any license from
+ https://huggingface.co/docs/hub/repositories-licenses.
+ annotations_creators (`Union[str, List[str]]`, *optional*):
+ How the annotations for the dataset were created.
+ Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
+ language_creators (`Union[str, List[str]]`, *optional*):
+ How the text-based data in the dataset was created.
+ Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
+ multilinguality (`Union[str, List[str]]`, *optional*):
+ Whether the dataset is multilingual.
+ Options are: 'monolingual', 'multilingual', 'translation', 'other'.
+ size_categories (`Union[str, List[str]]`, *optional*):
+ The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
+ '100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
+ source_datasets (`List[str]]`, *optional*):
+ Indicates whether the dataset is an original dataset or extended from another existing dataset.
+ Options are: 'original' and 'extended'.
+ task_categories (`Union[str, List[str]]`, *optional*):
+ What categories of task does the dataset support?
+ task_ids (`Union[str, List[str]]`, *optional*):
+ What specific tasks does the dataset support?
+ paperswithcode_id (`str`, *optional*):
+ ID of the dataset on PapersWithCode.
+ pretty_name (`str`, *optional*):
+ A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
+ train_eval_index (`Dict`, *optional*):
+ A dictionary that describes the necessary spec for doing evaluation on the Hub.
+ If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
+ config_names (`Union[str, List[str]]`, *optional*):
+ A list of the available dataset configs for the dataset.
+ """
+
+ def __init__(
+ self,
+ *,
+ language: Optional[Union[str, List[str]]] = None,
+ license: Optional[Union[str, List[str]]] = None,
+ annotations_creators: Optional[Union[str, List[str]]] = None,
+ language_creators: Optional[Union[str, List[str]]] = None,
+ multilinguality: Optional[Union[str, List[str]]] = None,
+ size_categories: Optional[Union[str, List[str]]] = None,
+ source_datasets: Optional[List[str]] = None,
+ task_categories: Optional[Union[str, List[str]]] = None,
+ task_ids: Optional[Union[str, List[str]]] = None,
+ paperswithcode_id: Optional[str] = None,
+ pretty_name: Optional[str] = None,
+ train_eval_index: Optional[Dict] = None,
+ config_names: Optional[Union[str, List[str]]] = None,
+ ignore_metadata_errors: bool = False,
+ **kwargs,
+ ):
+ self.annotations_creators = annotations_creators
+ self.language_creators = language_creators
+ self.language = language
+ self.license = license
+ self.multilinguality = multilinguality
+ self.size_categories = size_categories
+ self.source_datasets = source_datasets
+ self.task_categories = task_categories
+ self.task_ids = task_ids
+ self.paperswithcode_id = paperswithcode_id
+ self.pretty_name = pretty_name
+ self.config_names = config_names
+
+ # TODO - maybe handle this similarly to EvalResult?
+ self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
+ super().__init__(**kwargs)
+
+ def _to_dict(self, data_dict):
+ data_dict["train-eval-index"] = data_dict.pop("train_eval_index")
+
+
+class SpaceCardData(CardData):
+ """Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
+
+ To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.
+
+ Args:
+ title (`str`, *optional*)
+ Title of the Space.
+ sdk (`str`, *optional*)
+ SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
+ sdk_version (`str`, *optional*)
+ Version of the used SDK (if Gradio/Streamlit sdk).
+ python_version (`str`, *optional*)
+ Python version used in the Space (if Gradio/Streamlit sdk).
+ app_file (`str`, *optional*)
+ Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
+ Path is relative to the root of the repository.
+ app_port (`str`, *optional*)
+ Port on which your application is running. Used only if sdk is `docker`.
+ license (`str`, *optional*)
+ License of this model. Example: apache-2.0 or any license from
+ https://huggingface.co/docs/hub/repositories-licenses.
+ duplicated_from (`str`, *optional*)
+ ID of the original Space if this is a duplicated Space.
+ models (List[`str`], *optional*)
+ List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
+ datasets (`List[str]`, *optional*)
+ List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
+ tags (`List[str]`, *optional*)
+ List of tags to add to your Space that can be used when filtering on the Hub.
+ ignore_metadata_errors (`str`):
+ If True, errors while parsing the metadata section will be ignored. Some information might be lost during
+ the process. Use it at your own risk.
+ kwargs (`dict`, *optional*):
+ Additional metadata that will be added to the space card.
+
+ Example:
+ ```python
+ >>> from huggingface_hub import SpaceCardData
+ >>> card_data = SpaceCardData(
+ ... title="Dreambooth Training",
+ ... license="mit",
+ ... sdk="gradio",
+ ... duplicated_from="multimodalart/dreambooth-training"
+ ... )
+ >>> card_data.to_dict()
+ {'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
+ ```
+ """
+
+ def __init__(
+ self,
+ *,
+ title: Optional[str] = None,
+ sdk: Optional[str] = None,
+ sdk_version: Optional[str] = None,
+ python_version: Optional[str] = None,
+ app_file: Optional[str] = None,
+ app_port: Optional[int] = None,
+ license: Optional[str] = None,
+ duplicated_from: Optional[str] = None,
+ models: Optional[List[str]] = None,
+ datasets: Optional[List[str]] = None,
+ tags: Optional[List[str]] = None,
+ ignore_metadata_errors: bool = False,
+ **kwargs,
+ ):
+ self.title = title
+ self.sdk = sdk
+ self.sdk_version = sdk_version
+ self.python_version = python_version
+ self.app_file = app_file
+ self.app_port = app_port
+ self.license = license
+ self.duplicated_from = duplicated_from
+ self.models = models
+ self.datasets = datasets
+ self.tags = _to_unique_list(tags)
+ super().__init__(**kwargs)
+
+
+def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]:
+ """Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.
+
+ A detailed spec of the model index can be found here:
+ https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
+
+ Args:
+ model_index (`List[Dict[str, Any]]`):
+ A model index data structure, likely coming from a README.md file on the
+ Hugging Face Hub.
+
+ Returns:
+ model_name (`str`):
+ The name of the model as found in the model index. This is used as the
+ identifier for the model on leaderboards like PapersWithCode.
+ eval_results (`List[EvalResult]`):
+ A list of `huggingface_hub.EvalResult` objects containing the metrics
+ reported in the provided model_index.
+
+ Example:
+ ```python
+ >>> from huggingface_hub.repocard_data import model_index_to_eval_results
+ >>> # Define a minimal model index
+ >>> model_index = [
+ ... {
+ ... "name": "my-cool-model",
+ ... "results": [
+ ... {
+ ... "task": {
+ ... "type": "image-classification"
+ ... },
+ ... "dataset": {
+ ... "type": "beans",
+ ... "name": "Beans"
+ ... },
+ ... "metrics": [
+ ... {
+ ... "type": "accuracy",
+ ... "value": 0.9
+ ... }
+ ... ]
+ ... }
+ ... ]
+ ... }
+ ... ]
+ >>> model_name, eval_results = model_index_to_eval_results(model_index)
+ >>> model_name
+ 'my-cool-model'
+ >>> eval_results[0].task_type
+ 'image-classification'
+ >>> eval_results[0].metric_type
+ 'accuracy'
+
+ ```
+ """
+
+ eval_results = []
+ for elem in model_index:
+ name = elem["name"]
+ results = elem["results"]
+ for result in results:
+ task_type = result["task"]["type"]
+ task_name = result["task"].get("name")
+ dataset_type = result["dataset"]["type"]
+ dataset_name = result["dataset"]["name"]
+ dataset_config = result["dataset"].get("config")
+ dataset_split = result["dataset"].get("split")
+ dataset_revision = result["dataset"].get("revision")
+ dataset_args = result["dataset"].get("args")
+ source_name = result.get("source", {}).get("name")
+ source_url = result.get("source", {}).get("url")
+
+ for metric in result["metrics"]:
+ metric_type = metric["type"]
+ metric_value = metric["value"]
+ metric_name = metric.get("name")
+ metric_args = metric.get("args")
+ metric_config = metric.get("config")
+ verified = metric.get("verified")
+ verify_token = metric.get("verifyToken")
+
+ eval_result = EvalResult(
+ task_type=task_type, # Required
+ dataset_type=dataset_type, # Required
+ dataset_name=dataset_name, # Required
+ metric_type=metric_type, # Required
+ metric_value=metric_value, # Required
+ task_name=task_name,
+ dataset_config=dataset_config,
+ dataset_split=dataset_split,
+ dataset_revision=dataset_revision,
+ dataset_args=dataset_args,
+ metric_name=metric_name,
+ metric_args=metric_args,
+ metric_config=metric_config,
+ verified=verified,
+ verify_token=verify_token,
+ source_name=source_name,
+ source_url=source_url,
+ )
+ eval_results.append(eval_result)
+ return name, eval_results
+
+
+def _remove_none(obj):
+ """
+ Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
+ """
+ if isinstance(obj, (list, tuple, set)):
+ return type(obj)(_remove_none(x) for x in obj if x is not None)
+ elif isinstance(obj, dict):
+ return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None)
+ else:
+ return obj
+
+
+def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]:
+ """Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
+ valid model-index that will be compatible with the format expected by the
+ Hugging Face Hub.
+
+ Args:
+ model_name (`str`):
+ Name of the model (ex. "my-cool-model"). This is used as the identifier
+ for the model on leaderboards like PapersWithCode.
+ eval_results (`List[EvalResult]`):
+ List of `huggingface_hub.EvalResult` objects containing the metrics to be
+ reported in the model-index.
+
+ Returns:
+ model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.
+
+ Example:
+ ```python
+ >>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
+ >>> # Define minimal eval_results
+ >>> eval_results = [
+ ... EvalResult(
+ ... task_type="image-classification", # Required
+ ... dataset_type="beans", # Required
+ ... dataset_name="Beans", # Required
+ ... metric_type="accuracy", # Required
+ ... metric_value=0.9, # Required
+ ... )
+ ... ]
+ >>> eval_results_to_model_index("my-cool-model", eval_results)
+ [{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]
+
+ ```
+ """
+
+ # Metrics are reported on a unique task-and-dataset basis.
+ # Here, we make a map of those pairs and the associated EvalResults.
+ task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list)
+ for eval_result in eval_results:
+ task_and_ds_types_map[eval_result.unique_identifier].append(eval_result)
+
+ # Use the map from above to generate the model index data.
+ model_index_data = []
+ for results in task_and_ds_types_map.values():
+ # All items from `results` share same metadata
+ sample_result = results[0]
+ data = {
+ "task": {
+ "type": sample_result.task_type,
+ "name": sample_result.task_name,
+ },
+ "dataset": {
+ "name": sample_result.dataset_name,
+ "type": sample_result.dataset_type,
+ "config": sample_result.dataset_config,
+ "split": sample_result.dataset_split,
+ "revision": sample_result.dataset_revision,
+ "args": sample_result.dataset_args,
+ },
+ "metrics": [
+ {
+ "type": result.metric_type,
+ "value": result.metric_value,
+ "name": result.metric_name,
+ "config": result.metric_config,
+ "args": result.metric_args,
+ "verified": result.verified,
+ "verifyToken": result.verify_token,
+ }
+ for result in results
+ ],
+ }
+ if sample_result.source_url is not None:
+ source = {
+ "url": sample_result.source_url,
+ }
+ if sample_result.source_name is not None:
+ source["name"] = sample_result.source_name
+ data["source"] = source
+ model_index_data.append(data)
+
+ # TODO - Check if there cases where this list is longer than one?
+ # Finally, the model index itself is list of dicts.
+ model_index = [
+ {
+ "name": model_name,
+ "results": model_index_data,
+ }
+ ]
+ return _remove_none(model_index)
+
+
+def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]:
+ if tags is None:
+ return tags
+ unique_tags = [] # make tags unique + keep order explicitly
+ for tag in tags:
+ if tag not in unique_tags:
+ unique_tags.append(tag)
+ return unique_tags