aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py19
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py609
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py144
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py139
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py1322
5 files changed, 2233 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py
new file mode 100644
index 00000000..261577d5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py
@@ -0,0 +1,19 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._assets_operations import AssetsOperations
+from ._extensive_model_operations import ExtensiveModelOperations
+from ._migration_operations import MigrationOperations
+from ._models_operations import ModelsOperations
+
+__all__ = [
+ 'AssetsOperations',
+ 'ExtensiveModelOperations',
+ 'MigrationOperations',
+ 'ModelsOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py
new file mode 100644
index 00000000..65afa16f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py
@@ -0,0 +1,609 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ run_id = kwargs.pop('run_id', None) # type: Optional[str]
+ project_id = kwargs.pop('project_id', None) # type: Optional[str]
+ name = kwargs.pop('name', None) # type: Optional[str]
+ tag = kwargs.pop('tag', None) # type: Optional[str]
+ count = kwargs.pop('count', None) # type: Optional[int]
+ skip_token = kwargs.pop('skip_token', None) # type: Optional[str]
+ tags = kwargs.pop('tags', None) # type: Optional[str]
+ properties = kwargs.pop('properties', None) # type: Optional[str]
+ type = kwargs.pop('type', None) # type: Optional[str]
+ orderby = kwargs.pop('orderby', None) # type: Optional[Union[str, "_models.OrderString"]]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if run_id is not None:
+ query_parameters['runId'] = _SERIALIZER.query("run_id", run_id, 'str')
+ if project_id is not None:
+ query_parameters['projectId'] = _SERIALIZER.query("project_id", project_id, 'str')
+ if name is not None:
+ query_parameters['name'] = _SERIALIZER.query("name", name, 'str')
+ if tag is not None:
+ query_parameters['tag'] = _SERIALIZER.query("tag", tag, 'str')
+ if count is not None:
+ query_parameters['count'] = _SERIALIZER.query("count", count, 'int')
+ if skip_token is not None:
+ query_parameters['$skipToken'] = _SERIALIZER.query("skip_token", skip_token, 'str')
+ if tags is not None:
+ query_parameters['tags'] = _SERIALIZER.query("tags", tags, 'str')
+ if properties is not None:
+ query_parameters['properties'] = _SERIALIZER.query("properties", properties, 'str')
+ if type is not None:
+ query_parameters['type'] = _SERIALIZER.query("type", type, 'str')
+ if orderby is not None:
+ query_parameters['orderby'] = _SERIALIZER.query("orderby", orderby, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_patch_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ **kwargs
+ )
+
+
+def build_query_by_id_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class AssetsOperations(object):
+ """AssetsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.Asset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Asset"
+ """create.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Asset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'Asset')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'Asset')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id=None, # type: Optional[str]
+ project_id=None, # type: Optional[str]
+ name=None, # type: Optional[str]
+ tag=None, # type: Optional[str]
+ count=None, # type: Optional[int]
+ skip_token=None, # type: Optional[str]
+ tags=None, # type: Optional[str]
+ properties=None, # type: Optional[str]
+ type=None, # type: Optional[str]
+ orderby=None, # type: Optional[Union[str, "_models.OrderString"]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.AssetPaginatedResult"
+ """list.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param project_id:
+ :type project_id: str
+ :param name:
+ :type name: str
+ :param tag:
+ :type tag: str
+ :param count:
+ :type count: int
+ :param skip_token:
+ :type skip_token: str
+ :param tags:
+ :type tags: str
+ :param properties:
+ :type properties: str
+ :param type:
+ :type type: str
+ :param orderby:
+ :type orderby: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: AssetPaginatedResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.AssetPaginatedResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.AssetPaginatedResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ project_id=project_id,
+ name=name,
+ tag=tag,
+ count=count,
+ skip_token=skip_token,
+ tags=tags,
+ properties=properties,
+ type=type,
+ orderby=orderby,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('AssetPaginatedResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets'} # type: ignore
+
+
+ @distributed_trace
+ def patch(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: List["_models.Operation"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Asset"
+ """patch.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, '[Operation]')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, '[Operation]')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_patch_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.patch.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def delete(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """delete.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def query_by_id(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Asset"
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py
new file mode 100644
index 00000000..cd7703c6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py
@@ -0,0 +1,144 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_query_by_id_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/extensiveModels/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class ExtensiveModelOperations(object):
+ """ExtensiveModelOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def query_by_id(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ExtensiveModel"
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ExtensiveModel, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ExtensiveModel
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExtensiveModel"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ExtensiveModel', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/extensiveModels/{id}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py
new file mode 100644
index 00000000..e8a39933
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py
@@ -0,0 +1,139 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_start_migration_request(
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ migration = kwargs.pop('migration', None) # type: Optional[str]
+ timeout = kwargs.pop('timeout', "00:01:00") # type: Optional[str]
+ collection_id = kwargs.pop('collection_id', None) # type: Optional[str]
+ workspace_id = kwargs.pop('workspace_id', None) # type: Optional[str]
+
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/meta/migration')
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if migration is not None:
+ query_parameters['migration'] = _SERIALIZER.query("migration", migration, 'str')
+ if timeout is not None:
+ query_parameters['timeout'] = _SERIALIZER.query("timeout", timeout, 'str')
+ if collection_id is not None:
+ query_parameters['collectionId'] = _SERIALIZER.query("collection_id", collection_id, 'str')
+ if workspace_id is not None:
+ query_parameters['workspaceId'] = _SERIALIZER.query("workspace_id", workspace_id, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class MigrationOperations(object):
+ """MigrationOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def start_migration(
+ self,
+ migration=None, # type: Optional[str]
+ timeout="00:01:00", # type: Optional[str]
+ collection_id=None, # type: Optional[str]
+ workspace_id=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """start_migration.
+
+ :param migration:
+ :type migration: str
+ :param timeout:
+ :type timeout: str
+ :param collection_id:
+ :type collection_id: str
+ :param workspace_id:
+ :type workspace_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_start_migration_request(
+ migration=migration,
+ timeout=timeout,
+ collection_id=collection_id,
+ workspace_id=workspace_id,
+ template_url=self.start_migration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ start_migration.metadata = {'url': '/modelregistry/v1.0/meta/migration'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py
new file mode 100644
index 00000000..e65f830d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py
@@ -0,0 +1,1322 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_register_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ auto_version = kwargs.pop('auto_version', True) # type: Optional[bool]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if auto_version is not None:
+ query_parameters['autoVersion'] = _SERIALIZER.query("auto_version", auto_version, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ name = kwargs.pop('name', None) # type: Optional[str]
+ tag = kwargs.pop('tag', None) # type: Optional[str]
+ version = kwargs.pop('version', None) # type: Optional[str]
+ framework = kwargs.pop('framework', None) # type: Optional[str]
+ description = kwargs.pop('description', None) # type: Optional[str]
+ count = kwargs.pop('count', None) # type: Optional[int]
+ offset = kwargs.pop('offset', None) # type: Optional[int]
+ skip_token = kwargs.pop('skip_token', None) # type: Optional[str]
+ tags = kwargs.pop('tags', None) # type: Optional[str]
+ properties = kwargs.pop('properties', None) # type: Optional[str]
+ run_id = kwargs.pop('run_id', None) # type: Optional[str]
+ dataset_id = kwargs.pop('dataset_id', None) # type: Optional[str]
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ latest_version_only = kwargs.pop('latest_version_only', False) # type: Optional[bool]
+ feed = kwargs.pop('feed', None) # type: Optional[str]
+ list_view_type = kwargs.pop('list_view_type', None) # type: Optional[Union[str, "_models.ListViewType"]]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if name is not None:
+ query_parameters['name'] = _SERIALIZER.query("name", name, 'str')
+ if tag is not None:
+ query_parameters['tag'] = _SERIALIZER.query("tag", tag, 'str')
+ if version is not None:
+ query_parameters['version'] = _SERIALIZER.query("version", version, 'str')
+ if framework is not None:
+ query_parameters['framework'] = _SERIALIZER.query("framework", framework, 'str')
+ if description is not None:
+ query_parameters['description'] = _SERIALIZER.query("description", description, 'str')
+ if count is not None:
+ query_parameters['count'] = _SERIALIZER.query("count", count, 'int')
+ if offset is not None:
+ query_parameters['offset'] = _SERIALIZER.query("offset", offset, 'int')
+ if skip_token is not None:
+ query_parameters['$skipToken'] = _SERIALIZER.query("skip_token", skip_token, 'str')
+ if tags is not None:
+ query_parameters['tags'] = _SERIALIZER.query("tags", tags, 'str')
+ if properties is not None:
+ query_parameters['properties'] = _SERIALIZER.query("properties", properties, 'str')
+ if run_id is not None:
+ query_parameters['runId'] = _SERIALIZER.query("run_id", run_id, 'str')
+ if dataset_id is not None:
+ query_parameters['datasetId'] = _SERIALIZER.query("dataset_id", dataset_id, 'str')
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if latest_version_only is not None:
+ query_parameters['latestVersionOnly'] = _SERIALIZER.query("latest_version_only", latest_version_only, 'bool')
+ if feed is not None:
+ query_parameters['feed'] = _SERIALIZER.query("feed", feed, 'str')
+ if list_view_type is not None:
+ query_parameters['listViewType'] = _SERIALIZER.query("list_view_type", list_view_type, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_input_model_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredInput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_output_model_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredOutput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_get_resolved_uris_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/batchGetResolvedUris')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_query_by_id_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ include_deployment_settings = kwargs.pop('include_deployment_settings', False) # type: Optional[bool]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if include_deployment_settings is not None:
+ query_parameters['includeDeploymentSettings'] = _SERIALIZER.query("include_deployment_settings", include_deployment_settings, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ **kwargs
+ )
+
+
+def build_patch_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_query_post_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/list')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_query_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/querybatch')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_deployment_settings_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/deploymentSettings')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class ModelsOperations(object):
+ """ModelsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def register(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: "_models.Model"
+ auto_version=True, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """register.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Model
+ :param auto_version:
+ :type auto_version: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'Model')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'Model')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ auto_version=auto_version,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name=None, # type: Optional[str]
+ tag=None, # type: Optional[str]
+ version=None, # type: Optional[str]
+ framework=None, # type: Optional[str]
+ description=None, # type: Optional[str]
+ count=None, # type: Optional[int]
+ offset=None, # type: Optional[int]
+ skip_token=None, # type: Optional[str]
+ tags=None, # type: Optional[str]
+ properties=None, # type: Optional[str]
+ run_id=None, # type: Optional[str]
+ dataset_id=None, # type: Optional[str]
+ order_by=None, # type: Optional[str]
+ latest_version_only=False, # type: Optional[bool]
+ feed=None, # type: Optional[str]
+ list_view_type=None, # type: Optional[Union[str, "_models.ListViewType"]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ModelPagedResponse"
+ """list.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param tag:
+ :type tag: str
+ :param version:
+ :type version: str
+ :param framework:
+ :type framework: str
+ :param description:
+ :type description: str
+ :param count:
+ :type count: int
+ :param offset:
+ :type offset: int
+ :param skip_token:
+ :type skip_token: str
+ :param tags:
+ :type tags: str
+ :param properties:
+ :type properties: str
+ :param run_id:
+ :type run_id: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param order_by:
+ :type order_by: str
+ :param latest_version_only:
+ :type latest_version_only: bool
+ :param feed:
+ :type feed: str
+ :param list_view_type:
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelPagedResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelPagedResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelPagedResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ tag=tag,
+ version=version,
+ framework=framework,
+ description=description,
+ count=count,
+ offset=offset,
+ skip_token=skip_token,
+ tags=tags,
+ properties=properties,
+ run_id=run_id,
+ dataset_id=dataset_id,
+ order_by=order_by,
+ latest_version_only=latest_version_only,
+ feed=feed,
+ list_view_type=list_view_type,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelPagedResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_input_model(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: "_models.CreateUnregisteredInputModelDto"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """create_unregistered_input_model.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputModelDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputModelDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputModelDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_unregistered_input_model_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create_unregistered_input_model.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_model.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_output_model(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: "_models.CreateUnregisteredOutputModelDto"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """create_unregistered_output_model.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputModelDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputModelDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputModelDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_unregistered_output_model_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create_unregistered_output_model.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_model.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace
+ def batch_get_resolved_uris(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.BatchGetResolvedUrisDto"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchModelPathResponseDto"
+ """batch_get_resolved_uris.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedUrisDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchModelPathResponseDto, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchModelPathResponseDto
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchModelPathResponseDto"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedUrisDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedUrisDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchModelPathResponseDto', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/batchGetResolvedUris'} # type: ignore
+
+
+ @distributed_trace
+ def query_by_id(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ include_deployment_settings=False, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param include_deployment_settings:
+ :type include_deployment_settings: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ include_deployment_settings=include_deployment_settings,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def delete(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """delete.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def patch(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: List["_models.Operation"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """patch.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, '[Operation]')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, '[Operation]')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_patch_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.patch.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def list_query_post(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ListModelsRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ModelListModelsRequestPagedResponse"
+ """list_query_post.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelListModelsRequestPagedResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelListModelsRequestPagedResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelListModelsRequestPagedResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListModelsRequest')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListModelsRequest')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_list_query_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.list_query_post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelListModelsRequestPagedResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list_query_post.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/list'} # type: ignore
+
+
+ @distributed_trace
+ def batch_query(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ModelBatchDto"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ModelBatchResponseDto"
+ """batch_query.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ModelBatchDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelBatchResponseDto, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelBatchResponseDto
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelBatchResponseDto"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelBatchDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelBatchDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_batch_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.batch_query.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelBatchResponseDto', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_query.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/querybatch'} # type: ignore
+
+
+ @distributed_trace
+ def deployment_settings(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ModelSettingsIdentifiers"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """deployment_settings.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ModelSettingsIdentifiers
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelSettingsIdentifiers')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelSettingsIdentifiers')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_deployment_settings_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.deployment_settings.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ deployment_settings.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/deploymentSettings'} # type: ignore
+