aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py15
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py111
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py60
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py243
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py321
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py804
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py845
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py592
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py845
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py104
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py170
13 files changed, 4168 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py
new file mode 100644
index 00000000..f67ccda9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py
@@ -0,0 +1,15 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..597cca3d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py
@@ -0,0 +1,111 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import Any, Awaitable, Optional, TYPE_CHECKING
+
+from azure.core.rest import AsyncHttpResponse, HttpRequest
+from azure.mgmt.core import AsyncARMPipelineClient
+from msrest import Deserializer, Serializer
+
+from .. import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import DataCallOperations, DataContainerOperations, DataVersionOperations, DatasetControllerV2Operations, DatasetV2Operations, DatasetsV1Operations, DeleteOperations, GetOperationStatusOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+class AzureMachineLearningWorkspaces:
+ """AzureMachineLearningWorkspaces.
+
+ :ivar data_call: DataCallOperations operations
+ :vartype data_call: azure.mgmt.machinelearningservices.aio.operations.DataCallOperations
+ :ivar data_container: DataContainerOperations operations
+ :vartype data_container:
+ azure.mgmt.machinelearningservices.aio.operations.DataContainerOperations
+ :ivar delete: DeleteOperations operations
+ :vartype delete: azure.mgmt.machinelearningservices.aio.operations.DeleteOperations
+ :ivar datasets_v1: DatasetsV1Operations operations
+ :vartype datasets_v1: azure.mgmt.machinelearningservices.aio.operations.DatasetsV1Operations
+ :ivar dataset_controller_v2: DatasetControllerV2Operations operations
+ :vartype dataset_controller_v2:
+ azure.mgmt.machinelearningservices.aio.operations.DatasetControllerV2Operations
+ :ivar dataset_v2: DatasetV2Operations operations
+ :vartype dataset_v2: azure.mgmt.machinelearningservices.aio.operations.DatasetV2Operations
+ :ivar data_version: DataVersionOperations operations
+ :vartype data_version: azure.mgmt.machinelearningservices.aio.operations.DataVersionOperations
+ :ivar get_operation_status: GetOperationStatusOperations operations
+ :vartype get_operation_status:
+ azure.mgmt.machinelearningservices.aio.operations.GetOperationStatusOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ base_url: str = "",
+ **kwargs: Any
+ ) -> None:
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.data_call = DataCallOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.data_container = DataContainerOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.delete = DeleteOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.datasets_v1 = DatasetsV1Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.dataset_controller_v2 = DatasetControllerV2Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.dataset_v2 = DatasetV2Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.data_version = DataVersionOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.get_operation_status = GetOperationStatusOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request: HttpRequest,
+ **kwargs: Any
+ ) -> Awaitable[AsyncHttpResponse]:
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = await client._send_request(request)
+ <AsyncHttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.AsyncHttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ async def close(self) -> None:
+ await self._client.close()
+
+ async def __aenter__(self) -> "AzureMachineLearningWorkspaces":
+ await self._client.__aenter__()
+ return self
+
+ async def __aexit__(self, *exc_details) -> None:
+ await self._client.__aexit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py
new file mode 100644
index 00000000..26def54e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py
@@ -0,0 +1,60 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import Any, TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMHttpLoggingPolicy, AsyncARMChallengeAuthenticationPolicy
+
+from .._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration):
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ **kwargs: Any
+ ) -> None:
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs: Any
+ ) -> None:
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = AsyncARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py
new file mode 100644
index 00000000..f0340813
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py
@@ -0,0 +1,27 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._data_call_operations import DataCallOperations
+from ._data_container_operations import DataContainerOperations
+from ._delete_operations import DeleteOperations
+from ._datasets_v1_operations import DatasetsV1Operations
+from ._dataset_controller_v2_operations import DatasetControllerV2Operations
+from ._dataset_v2_operations import DatasetV2Operations
+from ._data_version_operations import DataVersionOperations
+from ._get_operation_status_operations import GetOperationStatusOperations
+
+__all__ = [
+ 'DataCallOperations',
+ 'DataContainerOperations',
+ 'DeleteOperations',
+ 'DatasetsV1Operations',
+ 'DatasetControllerV2Operations',
+ 'DatasetV2Operations',
+ 'DataVersionOperations',
+ 'GetOperationStatusOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py
new file mode 100644
index 00000000..cf00280c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py
@@ -0,0 +1,243 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._data_call_operations import build_get_preview_for_ml_table_request, build_get_quick_profile_for_ml_table_request, build_get_schema_for_ml_table_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DataCallOperations:
+ """DataCallOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_schema_for_ml_table(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataCallRequest"] = None,
+ **kwargs: Any
+ ) -> List["_models.ColumnDefinition"]:
+ """Get schema for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ColumnDefinition, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ColumnDefinition"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_schema_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_schema_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ColumnDefinition]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_schema_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/schema'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_preview_for_ml_table(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataCallRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.DataViewSetResult":
+ """Get preview for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataViewSetResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataViewSetResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataViewSetResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_preview_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_preview_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataViewSetResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_preview_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/preview'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_quick_profile_for_ml_table(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataCallRequest"] = None,
+ **kwargs: Any
+ ) -> List["_models.ProfileResult"]:
+ """Get quick profile for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ProfileResult, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ProfileResult]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ProfileResult"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_quick_profile_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_quick_profile_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ProfileResult]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_quick_profile_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/quickprofile'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py
new file mode 100644
index 00000000..c4c78abb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py
@@ -0,0 +1,321 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._data_container_operations import build_create_data_container_request, build_get_data_container_request, build_list_data_container_request, build_modify_data_container_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DataContainerOperations:
+ """DataContainerOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataContainer"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """create_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainer')
+ else:
+ _json = None
+
+ request = build_create_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+
+ @distributed_trace
+ def list_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDataContainerEntityList"]:
+ """list_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataContainerEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataContainerEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataContainerEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.list_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataContainerEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+ @distributed_trace_async
+ async def get_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """get_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.get_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def modify_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Optional["_models.DataContainerMutable"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """modify_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainerMutable')
+ else:
+ _json = None
+
+ request = build_modify_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py
new file mode 100644
index 00000000..9f375aeb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py
@@ -0,0 +1,804 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._data_version_operations import build_batch_get_resolved_uris_request, build_create_request, build_create_unregistered_input_data_request, build_create_unregistered_output_data_request, build_delete_request, build_exists_request, build_get_by_asset_id_request, build_get_request, build_list_request, build_modify_request, build_registered_existing_data_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DataVersionOperations:
+ """DataVersionOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Optional["_models.DataVersion"] = None,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """create.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersion')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ order_by: Optional[str] = None,
+ top: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDataVersionEntityList"]:
+ """list.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param order_by:
+ :type order_by: str
+ :param top:
+ :type top: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataVersionEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataVersionEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataVersionEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataVersionEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+ @distributed_trace_async
+ async def get(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """get.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def modify(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Optional["_models.DataVersionMutable"] = None,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """modify.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersionMutable')
+ else:
+ _json = None
+
+ request = build_modify_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.HttpResponseMessage":
+ """delete.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def exists(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ **kwargs: Any
+ ) -> bool:
+ """exists.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: bool, or the result of cls(response)
+ :rtype: bool
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[bool]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_exists_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.exists.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('bool', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ exists.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}/exists'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_asset_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.AssetId"] = None,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """get_by_asset_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.AssetId
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'AssetId')
+ else:
+ _json = None
+
+ request = build_get_by_asset_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_asset_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_asset_id.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/getByAssetId'} # type: ignore
+
+
+ @distributed_trace_async
+ async def create_unregistered_input_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.CreateUnregisteredInputData"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """create_unregistered_input_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_input_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_input_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace_async
+ async def create_unregistered_output_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.CreateUnregisteredOutputData"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """create_unregistered_output_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_output_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_output_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace_async
+ async def registered_existing_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.RegisterExistingData"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """registered_existing_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RegisterExistingData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RegisterExistingData')
+ else:
+ _json = None
+
+ request = build_registered_existing_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.registered_existing_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ registered_existing_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/registerExisting'} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_get_resolved_uris(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.BatchGetResolvedURIs"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchDataUriResponse":
+ """batch_get_resolved_uris.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedURIs
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchDataUriResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchDataUriResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchDataUriResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedURIs')
+ else:
+ _json = None
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchDataUriResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/batchGetResolvedUris'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py
new file mode 100644
index 00000000..a3574be3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py
@@ -0,0 +1,845 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._dataset_controller_v2_operations import build_delete_all_datasets_request, build_get_all_dataset_definitions_request, build_get_all_dataset_versions_request, build_get_dataset_by_name_request, build_get_dataset_definition_request, build_list_request, build_register_request, build_unregister_dataset_request, build_update_dataset_request, build_update_definition_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DatasetControllerV2Operations:
+ """DatasetControllerV2Operations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_dataset_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.DatasetDefinition":
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetDefinitionList"]:
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace_async
+ async def update_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ register_as_pending: Optional[bool] = False,
+ force_update: Optional[bool] = False,
+ dataset_type: Optional[str] = None,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.DatasetDefinition"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedStringList"]:
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace_async
+ async def get_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_name: str,
+ version_id: Optional[str] = None,
+ include_latest_definition: Optional[bool] = True,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_names: Optional[List[str]] = None,
+ search_text: Optional[str] = None,
+ include_invisible: Optional[bool] = False,
+ status: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ include_latest_definition: Optional[bool] = False,
+ order_by: Optional[str] = None,
+ order_by_asc: Optional[bool] = False,
+ dataset_types: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetList"]:
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace_async
+ async def register(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ register_as_pending: Optional[bool] = False,
+ if_exists_ok: Optional[bool] = True,
+ update_definition_if_exists: Optional[bool] = False,
+ with_data_hash: Optional[bool] = False,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_all_datasets(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ force_update: Optional[bool] = False,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def unregister_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py
new file mode 100644
index 00000000..584122c1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py
@@ -0,0 +1,592 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._dataset_v2_operations import build_create_request, build_delete_all_datasets_request, build_delete_dataset_by_name_request, build_get_dataset_by_id_request, build_get_dataset_by_name_request, build_list_request, build_update_dataset_by_name_and_version_request, build_update_dataset_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DatasetV2Operations:
+ """DatasetV2Operations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ if_exists_update: Optional[bool] = False,
+ body: Optional["_models.DatasetV2"] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Create new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param if_exists_update:
+ :type if_exists_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ if_exists_update=if_exists_update,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_all_datasets(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """Delete all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ names: Optional[List[str]] = None,
+ search_text: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetV2List"]:
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param names:
+ :type names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetV2List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetV2List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetV2List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetV2List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace_async
+ async def delete_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version_id: str,
+ **kwargs: Any
+ ) -> None:
+ """Delete a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ template_url=self.delete_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset_by_name_and_version(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version_id: str,
+ body: Optional["_models.DatasetV2"] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Update a dataset by its name and version.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_by_name_and_version_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset_by_name_and_version.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset_by_name_and_version.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_dataset_by_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Get a dataset for a given dataset id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ template_url=self.get_dataset_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_id.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ body: Optional["_models.DatasetV2"] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_name: str,
+ version_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py
new file mode 100644
index 00000000..97e74d53
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py
@@ -0,0 +1,845 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._datasets_v1_operations import build_delete_all_datasets_request, build_get_all_dataset_definitions_request, build_get_all_dataset_versions_request, build_get_dataset_by_name_request, build_get_dataset_definition_request, build_list_request, build_register_request, build_unregister_dataset_request, build_update_dataset_request, build_update_definition_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DatasetsV1Operations:
+ """DatasetsV1Operations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_dataset_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.DatasetDefinition":
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetDefinitionList"]:
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace_async
+ async def update_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ register_as_pending: Optional[bool] = False,
+ force_update: Optional[bool] = False,
+ dataset_type: Optional[str] = None,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.DatasetDefinition"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedStringList"]:
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace_async
+ async def get_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_name: str,
+ version_id: Optional[str] = None,
+ include_latest_definition: Optional[bool] = True,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_names: Optional[List[str]] = None,
+ search_text: Optional[str] = None,
+ include_invisible: Optional[bool] = False,
+ status: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ include_latest_definition: Optional[bool] = False,
+ order_by: Optional[str] = None,
+ order_by_asc: Optional[bool] = False,
+ dataset_types: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetList"]:
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace_async
+ async def register(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ register_as_pending: Optional[bool] = False,
+ if_exists_ok: Optional[bool] = True,
+ update_definition_if_exists: Optional[bool] = False,
+ with_data_hash: Optional[bool] = False,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_all_datasets(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ force_update: Optional[bool] = False,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def unregister_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py
new file mode 100644
index 00000000..9bb293a5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py
@@ -0,0 +1,104 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._delete_operations import build_data_container_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DeleteOperations:
+ """DeleteOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> "_models.HttpResponseMessage":
+ """data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py
new file mode 100644
index 00000000..273b307f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py
@@ -0,0 +1,170 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._get_operation_status_operations import build_get_dataset_operation_status_request_initial
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class GetOperationStatusOperations:
+ """GetOperationStatusOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ async def _get_dataset_operation_status_initial(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ operation_id: str,
+ **kwargs: Any
+ ) -> Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]:
+ cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_operation_status_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ template_url=self._get_dataset_operation_status_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+
+ if response.status_code == 202:
+ response_headers['Location']=self._deserialize('str', response.headers.get('Location'))
+
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _get_dataset_operation_status_initial.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def begin_get_dataset_operation_status(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ operation_id: str,
+ **kwargs: Any
+ ) -> AsyncLROPoller["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]:
+ """get_dataset_operation_status.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param operation_id:
+ :type operation_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either
+ LongRunningOperationResponse1LongRunningOperationResponseObject or the result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.LongRunningOperationResponse1LongRunningOperationResponseObject]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = await self._get_dataset_operation_status_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = AsyncNoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ else:
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_get_dataset_operation_status.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore