diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/PIL/ImageFilter.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/PIL/ImageFilter.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/PIL/ImageFilter.py | 605 |
1 files changed, 605 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/PIL/ImageFilter.py b/.venv/lib/python3.12/site-packages/PIL/ImageFilter.py new file mode 100644 index 00000000..b350e56f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/PIL/ImageFilter.py @@ -0,0 +1,605 @@ +# +# The Python Imaging Library. +# $Id$ +# +# standard filters +# +# History: +# 1995-11-27 fl Created +# 2002-06-08 fl Added rank and mode filters +# 2003-09-15 fl Fixed rank calculation in rank filter; added expand call +# +# Copyright (c) 1997-2003 by Secret Labs AB. +# Copyright (c) 1995-2002 by Fredrik Lundh. +# +# See the README file for information on usage and redistribution. +# +from __future__ import annotations + +import abc +import functools +from collections.abc import Sequence +from types import ModuleType +from typing import TYPE_CHECKING, Any, Callable, cast + +if TYPE_CHECKING: + from . import _imaging + from ._typing import NumpyArray + + +class Filter: + @abc.abstractmethod + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + pass + + +class MultibandFilter(Filter): + pass + + +class BuiltinFilter(MultibandFilter): + filterargs: tuple[Any, ...] + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + if image.mode == "P": + msg = "cannot filter palette images" + raise ValueError(msg) + return image.filter(*self.filterargs) + + +class Kernel(BuiltinFilter): + """ + Create a convolution kernel. This only supports 3x3 and 5x5 integer and floating + point kernels. + + Kernels can only be applied to "L" and "RGB" images. + + :param size: Kernel size, given as (width, height). This must be (3,3) or (5,5). + :param kernel: A sequence containing kernel weights. The kernel will be flipped + vertically before being applied to the image. + :param scale: Scale factor. If given, the result for each pixel is divided by this + value. The default is the sum of the kernel weights. + :param offset: Offset. If given, this value is added to the result, after it has + been divided by the scale factor. + """ + + name = "Kernel" + + def __init__( + self, + size: tuple[int, int], + kernel: Sequence[float], + scale: float | None = None, + offset: float = 0, + ) -> None: + if scale is None: + # default scale is sum of kernel + scale = functools.reduce(lambda a, b: a + b, kernel) + if size[0] * size[1] != len(kernel): + msg = "not enough coefficients in kernel" + raise ValueError(msg) + self.filterargs = size, scale, offset, kernel + + +class RankFilter(Filter): + """ + Create a rank filter. The rank filter sorts all pixels in + a window of the given size, and returns the ``rank``'th value. + + :param size: The kernel size, in pixels. + :param rank: What pixel value to pick. Use 0 for a min filter, + ``size * size / 2`` for a median filter, ``size * size - 1`` + for a max filter, etc. + """ + + name = "Rank" + + def __init__(self, size: int, rank: int) -> None: + self.size = size + self.rank = rank + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + if image.mode == "P": + msg = "cannot filter palette images" + raise ValueError(msg) + image = image.expand(self.size // 2, self.size // 2) + return image.rankfilter(self.size, self.rank) + + +class MedianFilter(RankFilter): + """ + Create a median filter. Picks the median pixel value in a window with the + given size. + + :param size: The kernel size, in pixels. + """ + + name = "Median" + + def __init__(self, size: int = 3) -> None: + self.size = size + self.rank = size * size // 2 + + +class MinFilter(RankFilter): + """ + Create a min filter. Picks the lowest pixel value in a window with the + given size. + + :param size: The kernel size, in pixels. + """ + + name = "Min" + + def __init__(self, size: int = 3) -> None: + self.size = size + self.rank = 0 + + +class MaxFilter(RankFilter): + """ + Create a max filter. Picks the largest pixel value in a window with the + given size. + + :param size: The kernel size, in pixels. + """ + + name = "Max" + + def __init__(self, size: int = 3) -> None: + self.size = size + self.rank = size * size - 1 + + +class ModeFilter(Filter): + """ + Create a mode filter. Picks the most frequent pixel value in a box with the + given size. Pixel values that occur only once or twice are ignored; if no + pixel value occurs more than twice, the original pixel value is preserved. + + :param size: The kernel size, in pixels. + """ + + name = "Mode" + + def __init__(self, size: int = 3) -> None: + self.size = size + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + return image.modefilter(self.size) + + +class GaussianBlur(MultibandFilter): + """Blurs the image with a sequence of extended box filters, which + approximates a Gaussian kernel. For details on accuracy see + <https://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf> + + :param radius: Standard deviation of the Gaussian kernel. Either a sequence of two + numbers for x and y, or a single number for both. + """ + + name = "GaussianBlur" + + def __init__(self, radius: float | Sequence[float] = 2) -> None: + self.radius = radius + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + xy = self.radius + if isinstance(xy, (int, float)): + xy = (xy, xy) + if xy == (0, 0): + return image.copy() + return image.gaussian_blur(xy) + + +class BoxBlur(MultibandFilter): + """Blurs the image by setting each pixel to the average value of the pixels + in a square box extending radius pixels in each direction. + Supports float radius of arbitrary size. Uses an optimized implementation + which runs in linear time relative to the size of the image + for any radius value. + + :param radius: Size of the box in a direction. Either a sequence of two numbers for + x and y, or a single number for both. + + Radius 0 does not blur, returns an identical image. + Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total. + """ + + name = "BoxBlur" + + def __init__(self, radius: float | Sequence[float]) -> None: + xy = radius if isinstance(radius, (tuple, list)) else (radius, radius) + if xy[0] < 0 or xy[1] < 0: + msg = "radius must be >= 0" + raise ValueError(msg) + self.radius = radius + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + xy = self.radius + if isinstance(xy, (int, float)): + xy = (xy, xy) + if xy == (0, 0): + return image.copy() + return image.box_blur(xy) + + +class UnsharpMask(MultibandFilter): + """Unsharp mask filter. + + See Wikipedia's entry on `digital unsharp masking`_ for an explanation of + the parameters. + + :param radius: Blur Radius + :param percent: Unsharp strength, in percent + :param threshold: Threshold controls the minimum brightness change that + will be sharpened + + .. _digital unsharp masking: https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking + + """ + + name = "UnsharpMask" + + def __init__( + self, radius: float = 2, percent: int = 150, threshold: int = 3 + ) -> None: + self.radius = radius + self.percent = percent + self.threshold = threshold + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + return image.unsharp_mask(self.radius, self.percent, self.threshold) + + +class BLUR(BuiltinFilter): + name = "Blur" + # fmt: off + filterargs = (5, 5), 16, 0, ( + 1, 1, 1, 1, 1, + 1, 0, 0, 0, 1, + 1, 0, 0, 0, 1, + 1, 0, 0, 0, 1, + 1, 1, 1, 1, 1, + ) + # fmt: on + + +class CONTOUR(BuiltinFilter): + name = "Contour" + # fmt: off + filterargs = (3, 3), 1, 255, ( + -1, -1, -1, + -1, 8, -1, + -1, -1, -1, + ) + # fmt: on + + +class DETAIL(BuiltinFilter): + name = "Detail" + # fmt: off + filterargs = (3, 3), 6, 0, ( + 0, -1, 0, + -1, 10, -1, + 0, -1, 0, + ) + # fmt: on + + +class EDGE_ENHANCE(BuiltinFilter): + name = "Edge-enhance" + # fmt: off + filterargs = (3, 3), 2, 0, ( + -1, -1, -1, + -1, 10, -1, + -1, -1, -1, + ) + # fmt: on + + +class EDGE_ENHANCE_MORE(BuiltinFilter): + name = "Edge-enhance More" + # fmt: off + filterargs = (3, 3), 1, 0, ( + -1, -1, -1, + -1, 9, -1, + -1, -1, -1, + ) + # fmt: on + + +class EMBOSS(BuiltinFilter): + name = "Emboss" + # fmt: off + filterargs = (3, 3), 1, 128, ( + -1, 0, 0, + 0, 1, 0, + 0, 0, 0, + ) + # fmt: on + + +class FIND_EDGES(BuiltinFilter): + name = "Find Edges" + # fmt: off + filterargs = (3, 3), 1, 0, ( + -1, -1, -1, + -1, 8, -1, + -1, -1, -1, + ) + # fmt: on + + +class SHARPEN(BuiltinFilter): + name = "Sharpen" + # fmt: off + filterargs = (3, 3), 16, 0, ( + -2, -2, -2, + -2, 32, -2, + -2, -2, -2, + ) + # fmt: on + + +class SMOOTH(BuiltinFilter): + name = "Smooth" + # fmt: off + filterargs = (3, 3), 13, 0, ( + 1, 1, 1, + 1, 5, 1, + 1, 1, 1, + ) + # fmt: on + + +class SMOOTH_MORE(BuiltinFilter): + name = "Smooth More" + # fmt: off + filterargs = (5, 5), 100, 0, ( + 1, 1, 1, 1, 1, + 1, 5, 5, 5, 1, + 1, 5, 44, 5, 1, + 1, 5, 5, 5, 1, + 1, 1, 1, 1, 1, + ) + # fmt: on + + +class Color3DLUT(MultibandFilter): + """Three-dimensional color lookup table. + + Transforms 3-channel pixels using the values of the channels as coordinates + in the 3D lookup table and interpolating the nearest elements. + + This method allows you to apply almost any color transformation + in constant time by using pre-calculated decimated tables. + + .. versionadded:: 5.2.0 + + :param size: Size of the table. One int or tuple of (int, int, int). + Minimal size in any dimension is 2, maximum is 65. + :param table: Flat lookup table. A list of ``channels * size**3`` + float elements or a list of ``size**3`` channels-sized + tuples with floats. Channels are changed first, + then first dimension, then second, then third. + Value 0.0 corresponds lowest value of output, 1.0 highest. + :param channels: Number of channels in the table. Could be 3 or 4. + Default is 3. + :param target_mode: A mode for the result image. Should have not less + than ``channels`` channels. Default is ``None``, + which means that mode wouldn't be changed. + """ + + name = "Color 3D LUT" + + def __init__( + self, + size: int | tuple[int, int, int], + table: Sequence[float] | Sequence[Sequence[int]] | NumpyArray, + channels: int = 3, + target_mode: str | None = None, + **kwargs: bool, + ) -> None: + if channels not in (3, 4): + msg = "Only 3 or 4 output channels are supported" + raise ValueError(msg) + self.size = size = self._check_size(size) + self.channels = channels + self.mode = target_mode + + # Hidden flag `_copy_table=False` could be used to avoid extra copying + # of the table if the table is specially made for the constructor. + copy_table = kwargs.get("_copy_table", True) + items = size[0] * size[1] * size[2] + wrong_size = False + + numpy: ModuleType | None = None + if hasattr(table, "shape"): + try: + import numpy + except ImportError: + pass + + if numpy and isinstance(table, numpy.ndarray): + numpy_table: NumpyArray = table + if copy_table: + numpy_table = numpy_table.copy() + + if numpy_table.shape in [ + (items * channels,), + (items, channels), + (size[2], size[1], size[0], channels), + ]: + table = numpy_table.reshape(items * channels) + else: + wrong_size = True + + else: + if copy_table: + table = list(table) + + # Convert to a flat list + if table and isinstance(table[0], (list, tuple)): + raw_table = cast(Sequence[Sequence[int]], table) + flat_table: list[int] = [] + for pixel in raw_table: + if len(pixel) != channels: + msg = ( + "The elements of the table should " + f"have a length of {channels}." + ) + raise ValueError(msg) + flat_table.extend(pixel) + table = flat_table + + if wrong_size or len(table) != items * channels: + msg = ( + "The table should have either channels * size**3 float items " + "or size**3 items of channels-sized tuples with floats. " + f"Table should be: {channels}x{size[0]}x{size[1]}x{size[2]}. " + f"Actual length: {len(table)}" + ) + raise ValueError(msg) + self.table = table + + @staticmethod + def _check_size(size: Any) -> tuple[int, int, int]: + try: + _, _, _ = size + except ValueError as e: + msg = "Size should be either an integer or a tuple of three integers." + raise ValueError(msg) from e + except TypeError: + size = (size, size, size) + size = tuple(int(x) for x in size) + for size_1d in size: + if not 2 <= size_1d <= 65: + msg = "Size should be in [2, 65] range." + raise ValueError(msg) + return size + + @classmethod + def generate( + cls, + size: int | tuple[int, int, int], + callback: Callable[[float, float, float], tuple[float, ...]], + channels: int = 3, + target_mode: str | None = None, + ) -> Color3DLUT: + """Generates new LUT using provided callback. + + :param size: Size of the table. Passed to the constructor. + :param callback: Function with three parameters which correspond + three color channels. Will be called ``size**3`` + times with values from 0.0 to 1.0 and should return + a tuple with ``channels`` elements. + :param channels: The number of channels which should return callback. + :param target_mode: Passed to the constructor of the resulting + lookup table. + """ + size_1d, size_2d, size_3d = cls._check_size(size) + if channels not in (3, 4): + msg = "Only 3 or 4 output channels are supported" + raise ValueError(msg) + + table: list[float] = [0] * (size_1d * size_2d * size_3d * channels) + idx_out = 0 + for b in range(size_3d): + for g in range(size_2d): + for r in range(size_1d): + table[idx_out : idx_out + channels] = callback( + r / (size_1d - 1), g / (size_2d - 1), b / (size_3d - 1) + ) + idx_out += channels + + return cls( + (size_1d, size_2d, size_3d), + table, + channels=channels, + target_mode=target_mode, + _copy_table=False, + ) + + def transform( + self, + callback: Callable[..., tuple[float, ...]], + with_normals: bool = False, + channels: int | None = None, + target_mode: str | None = None, + ) -> Color3DLUT: + """Transforms the table values using provided callback and returns + a new LUT with altered values. + + :param callback: A function which takes old lookup table values + and returns a new set of values. The number + of arguments which function should take is + ``self.channels`` or ``3 + self.channels`` + if ``with_normals`` flag is set. + Should return a tuple of ``self.channels`` or + ``channels`` elements if it is set. + :param with_normals: If true, ``callback`` will be called with + coordinates in the color cube as the first + three arguments. Otherwise, ``callback`` + will be called only with actual color values. + :param channels: The number of channels in the resulting lookup table. + :param target_mode: Passed to the constructor of the resulting + lookup table. + """ + if channels not in (None, 3, 4): + msg = "Only 3 or 4 output channels are supported" + raise ValueError(msg) + ch_in = self.channels + ch_out = channels or ch_in + size_1d, size_2d, size_3d = self.size + + table: list[float] = [0] * (size_1d * size_2d * size_3d * ch_out) + idx_in = 0 + idx_out = 0 + for b in range(size_3d): + for g in range(size_2d): + for r in range(size_1d): + values = self.table[idx_in : idx_in + ch_in] + if with_normals: + values = callback( + r / (size_1d - 1), + g / (size_2d - 1), + b / (size_3d - 1), + *values, + ) + else: + values = callback(*values) + table[idx_out : idx_out + ch_out] = values + idx_in += ch_in + idx_out += ch_out + + return type(self)( + self.size, + table, + channels=ch_out, + target_mode=target_mode or self.mode, + _copy_table=False, + ) + + def __repr__(self) -> str: + r = [ + f"{self.__class__.__name__} from {self.table.__class__.__name__}", + "size={:d}x{:d}x{:d}".format(*self.size), + f"channels={self.channels:d}", + ] + if self.mode: + r.append(f"target_mode={self.mode}") + return "<{}>".format(" ".join(r)) + + def filter(self, image: _imaging.ImagingCore) -> _imaging.ImagingCore: + from . import Image + + return image.color_lut_3d( + self.mode or image.mode, + Image.Resampling.BILINEAR, + self.channels, + self.size[0], + self.size[1], + self.size[2], + self.table, + ) |