aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/PIL/ImageChops.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/PIL/ImageChops.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/PIL/ImageChops.py')
-rw-r--r--.venv/lib/python3.12/site-packages/PIL/ImageChops.py311
1 files changed, 311 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/PIL/ImageChops.py b/.venv/lib/python3.12/site-packages/PIL/ImageChops.py
new file mode 100644
index 00000000..29a5c995
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/PIL/ImageChops.py
@@ -0,0 +1,311 @@
+#
+# The Python Imaging Library.
+# $Id$
+#
+# standard channel operations
+#
+# History:
+# 1996-03-24 fl Created
+# 1996-08-13 fl Added logical operations (for "1" images)
+# 2000-10-12 fl Added offset method (from Image.py)
+#
+# Copyright (c) 1997-2000 by Secret Labs AB
+# Copyright (c) 1996-2000 by Fredrik Lundh
+#
+# See the README file for information on usage and redistribution.
+#
+
+from __future__ import annotations
+
+from . import Image
+
+
+def constant(image: Image.Image, value: int) -> Image.Image:
+ """Fill a channel with a given gray level.
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ return Image.new("L", image.size, value)
+
+
+def duplicate(image: Image.Image) -> Image.Image:
+ """Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`.
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ return image.copy()
+
+
+def invert(image: Image.Image) -> Image.Image:
+ """
+ Invert an image (channel). ::
+
+ out = MAX - image
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image.load()
+ return image._new(image.im.chop_invert())
+
+
+def lighter(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Compares the two images, pixel by pixel, and returns a new image containing
+ the lighter values. ::
+
+ out = max(image1, image2)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_lighter(image2.im))
+
+
+def darker(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Compares the two images, pixel by pixel, and returns a new image containing
+ the darker values. ::
+
+ out = min(image1, image2)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_darker(image2.im))
+
+
+def difference(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Returns the absolute value of the pixel-by-pixel difference between the two
+ images. ::
+
+ out = abs(image1 - image2)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_difference(image2.im))
+
+
+def multiply(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Superimposes two images on top of each other.
+
+ If you multiply an image with a solid black image, the result is black. If
+ you multiply with a solid white image, the image is unaffected. ::
+
+ out = image1 * image2 / MAX
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_multiply(image2.im))
+
+
+def screen(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Superimposes two inverted images on top of each other. ::
+
+ out = MAX - ((MAX - image1) * (MAX - image2) / MAX)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_screen(image2.im))
+
+
+def soft_light(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Superimposes two images on top of each other using the Soft Light algorithm
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_soft_light(image2.im))
+
+
+def hard_light(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Superimposes two images on top of each other using the Hard Light algorithm
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_hard_light(image2.im))
+
+
+def overlay(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """
+ Superimposes two images on top of each other using the Overlay algorithm
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_overlay(image2.im))
+
+
+def add(
+ image1: Image.Image, image2: Image.Image, scale: float = 1.0, offset: float = 0
+) -> Image.Image:
+ """
+ Adds two images, dividing the result by scale and adding the
+ offset. If omitted, scale defaults to 1.0, and offset to 0.0. ::
+
+ out = ((image1 + image2) / scale + offset)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_add(image2.im, scale, offset))
+
+
+def subtract(
+ image1: Image.Image, image2: Image.Image, scale: float = 1.0, offset: float = 0
+) -> Image.Image:
+ """
+ Subtracts two images, dividing the result by scale and adding the offset.
+ If omitted, scale defaults to 1.0, and offset to 0.0. ::
+
+ out = ((image1 - image2) / scale + offset)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
+
+
+def add_modulo(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """Add two images, without clipping the result. ::
+
+ out = ((image1 + image2) % MAX)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_add_modulo(image2.im))
+
+
+def subtract_modulo(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """Subtract two images, without clipping the result. ::
+
+ out = ((image1 - image2) % MAX)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_subtract_modulo(image2.im))
+
+
+def logical_and(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """Logical AND between two images.
+
+ Both of the images must have mode "1". If you would like to perform a
+ logical AND on an image with a mode other than "1", try
+ :py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask
+ as the second image. ::
+
+ out = ((image1 and image2) % MAX)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_and(image2.im))
+
+
+def logical_or(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """Logical OR between two images.
+
+ Both of the images must have mode "1". ::
+
+ out = ((image1 or image2) % MAX)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_or(image2.im))
+
+
+def logical_xor(image1: Image.Image, image2: Image.Image) -> Image.Image:
+ """Logical XOR between two images.
+
+ Both of the images must have mode "1". ::
+
+ out = ((bool(image1) != bool(image2)) % MAX)
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ image1.load()
+ image2.load()
+ return image1._new(image1.im.chop_xor(image2.im))
+
+
+def blend(image1: Image.Image, image2: Image.Image, alpha: float) -> Image.Image:
+ """Blend images using constant transparency weight. Alias for
+ :py:func:`PIL.Image.blend`.
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ return Image.blend(image1, image2, alpha)
+
+
+def composite(
+ image1: Image.Image, image2: Image.Image, mask: Image.Image
+) -> Image.Image:
+ """Create composite using transparency mask. Alias for
+ :py:func:`PIL.Image.composite`.
+
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ return Image.composite(image1, image2, mask)
+
+
+def offset(image: Image.Image, xoffset: int, yoffset: int | None = None) -> Image.Image:
+ """Returns a copy of the image where data has been offset by the given
+ distances. Data wraps around the edges. If ``yoffset`` is omitted, it
+ is assumed to be equal to ``xoffset``.
+
+ :param image: Input image.
+ :param xoffset: The horizontal distance.
+ :param yoffset: The vertical distance. If omitted, both
+ distances are set to the same value.
+ :rtype: :py:class:`~PIL.Image.Image`
+ """
+
+ if yoffset is None:
+ yoffset = xoffset
+ image.load()
+ return image._new(image.im.offset(xoffset, yoffset))