1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
"""Module contains tests for gn3.partial_correlations"""
from unittest import TestCase
import pandas
import pytest
from numpy.testing import assert_allclose
from gn3.computations.partial_correlations import (
fix_samples,
control_samples,
build_data_frame,
tissue_correlation,
find_identical_traits,
good_dataset_samples_indexes)
sampleslist = ["B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"]
control_traits = (
{
"mysqlid": 36688172,
"data": {
"B6cC3-1": {
"sample_name": "B6cC3-1", "value": 7.51879, "variance": None,
"ndata": None},
"BXD1": {
"sample_name": "BXD1", "value": 7.77141, "variance": None,
"ndata": None},
"BXD12": {
"sample_name": "BXD12", "value": 8.39265, "variance": None,
"ndata": None},
"BXD16": {
"sample_name": "BXD16", "value": 8.17443, "variance": None,
"ndata": None},
"BXD19": {
"sample_name": "BXD19", "value": 8.30401, "variance": None,
"ndata": None},
"BXD2": {
"sample_name": "BXD2", "value": 7.80944, "variance": None,
"ndata": None}}},
{
"mysqlid": 36688172,
"data": {
"B6cC3-21": {
"sample_name": "B6cC3-1", "value": 7.51879, "variance": None,
"ndata": None},
"BXD21": {
"sample_name": "BXD1", "value": 7.77141, "variance": None,
"ndata": None},
"BXD12": {
"sample_name": "BXD12", "value": 8.39265, "variance": None,
"ndata": None},
"BXD16": {
"sample_name": "BXD16", "value": 8.17443, "variance": None,
"ndata": None},
"BXD19": {
"sample_name": "BXD19", "value": 8.30401, "variance": None,
"ndata": None},
"BXD2": {
"sample_name": "BXD2", "value": 7.80944, "variance": None,
"ndata": None}}},
{
"mysqlid": 36688172,
"data": {
"B6cC3-1": {
"sample_name": "B6cC3-1", "value": 7.51879, "variance": None,
"ndata": None},
"BXD1": {
"sample_name": "BXD1", "value": 7.77141, "variance": None,
"ndata": None},
"BXD12": {
"sample_name": "BXD12", "value": None, "variance": None,
"ndata": None},
"BXD16": {
"sample_name": "BXD16", "value": None, "variance": None,
"ndata": None},
"BXD19": {
"sample_name": "BXD19", "value": None, "variance": None,
"ndata": None},
"BXD2": {
"sample_name": "BXD2", "value": 7.80944, "variance": None,
"ndata": None}}})
dictified_control_samples = (
{"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, "variance": None},
"BXD1": {"sample_name": "BXD1", "value": 7.77141, "variance": None},
"BXD12": {"sample_name": "BXD12", "value": 8.39265, "variance": None},
"BXD16": {"sample_name": "BXD16", "value": 8.17443, "variance": None},
"BXD19": {"sample_name": "BXD19", "value": 8.30401, "variance": None},
"BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}},
{"BXD12": {"sample_name": "BXD12", "value": 8.39265, "variance": None},
"BXD16": {"sample_name": "BXD16", "value": 8.17443, "variance": None},
"BXD19": {"sample_name": "BXD19", "value": 8.30401, "variance": None},
"BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}},
{"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879, "variance": None},
"BXD1": {"sample_name": "BXD1", "value": 7.77141, "variance": None},
"BXD2": {"sample_name": "BXD2", "value": 7.80944, "variance": None}})
class TestPartialCorrelations(TestCase):
"""Class for testing partial correlations computation functions"""
@pytest.mark.unit_test
def test_control_samples(self):
"""Test that the control_samples works as expected."""
self.assertEqual(
control_samples(control_traits, sampleslist),
((("B6cC3-1", "BXD1", "BXD12", "BXD16", "BXD19", "BXD2"),
("BXD12", "BXD16", "BXD19", "BXD2"),
("B6cC3-1", "BXD1", "BXD2")),
((7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944),
(8.39265, 8.17443, 8.30401, 7.80944),
(7.51879, 7.77141, 7.80944)),
((None, None, None, None, None, None), (None, None, None, None),
(None, None, None)),
(6, 4, 3)))
@pytest.mark.unit_test
def test_fix_samples(self):
"""
Test that `fix_samples` returns only the common samples
Given:
- A primary trait
- A sequence of control samples
When:
- The two arguments are passed to `fix_samples`
Then:
- Only the names of the samples present in the primary trait that
are also present in ALL the control traits are present in the
return value
- Only the values of the samples present in the primary trait that
are also present in ALL the control traits are present in the
return value
- ALL the values for ALL the control traits are present in the
return value
- Only the variances of the samples present in the primary trait
that are also present in ALL the control traits are present in the
return value
- ALL the variances for ALL the control traits are present in the
return value
- The return value is a tuple of the above items, in the following
order:
((sample_names, ...), (primary_trait_values, ...),
(control_traits_values, ...), (primary_trait_variances, ...)
(control_traits_variances, ...))
"""
self.assertEqual(
fix_samples(
{"B6cC3-1": {"sample_name": "B6cC3-1", "value": 7.51879,
"variance": None},
"BXD1": {"sample_name": "BXD1", "value": 7.77141,
"variance": None},
"BXD2": {"sample_name": "BXD2", "value": 7.80944,
"variance": None}},
dictified_control_samples),
(("BXD2",), (7.80944,),
(7.51879, 7.77141, 8.39265, 8.17443, 8.30401, 7.80944, 8.39265,
8.17443, 8.30401, 7.80944, 7.51879, 7.77141, 7.80944),
(None,),
(None, None, None, None, None, None, None, None, None, None, None,
None, None)))
@pytest.mark.unit_test
def test_find_identical_traits(self):
"""
Test `gn3.partial_correlations.find_identical_traits`.
Given:
- the name of a primary trait
- a sequence of values for the primary trait
- a sequence of names of control traits
- a sequence of values of control traits
When:
- the arguments above are passed to the `find_identical_traits`
function
Then:
- Return ALL trait names that have the same value when up to three
decimal places are considered
"""
for primn, primv, contn, contv, expected in (
("pt", (12.98395,), ("ct0", "ct1", "ct2"),
((0.1234, 2.3456, 3.4567),), tuple()),
("pt", (12.98395, 2.3456, 3.4567), ("ct0", "ct1", "ct2"),
((12.98354, 2.3456, 3.4567), (64.2334, 6.3256, 64.2364),
(4.2374, 67.2345, 7.48234)), ("pt", "ct0")),
("pt", (12.98395, 75.52382), ("ct0", "ct1", "ct2", "ct3"),
((0.1234, 2.3456), (0.3621, 6543.572), (0.1234, 2.3456),
(0.1233, 4.5678)), ("ct0", "ct2"))
):
with self.subTest(
primary_name=primn, primary_value=primv,
control_names=contn, control_values=contv):
self.assertEqual(
find_identical_traits(primn, primv, contn, contv), expected)
@pytest.mark.unit_test
def test_tissue_correlation_error(self):
"""
Test that `tissue_correlation` raises specific exceptions for particular
error conditions.
"""
for primary, target, method, error, error_msg in (
((1, 2, 3), (4, 5, 6, 7), "pearson",
AssertionError,
(
"The lengths of the `primary_trait_values` and "
"`target_trait_values` must be equal")),
((1, 2, 3), (4, 5, 6, 7), "spearman",
AssertionError,
(
"The lengths of the `primary_trait_values` and "
"`target_trait_values` must be equal")),
((1, 2, 3, 4), (5, 6, 7), "pearson",
AssertionError,
(
"The lengths of the `primary_trait_values` and "
"`target_trait_values` must be equal")),
((1, 2, 3, 4), (5, 6, 7), "spearman",
AssertionError,
(
"The lengths of the `primary_trait_values` and "
"`target_trait_values` must be equal")),
((1, 2, 3), (4, 5, 6), "nonexistentmethod",
AssertionError,
(
"Method must be one of: pearson, spearman"))):
with self.subTest(primary=primary, target=target, method=method):
with self.assertRaises(error, msg=error_msg):
tissue_correlation(primary, target, method)
@pytest.mark.unit_test
def test_tissue_correlation(self): # pylint: disable=R0201
"""
Test that the correct correlation values are computed for the given:
- primary trait
- target trait
- method
"""
for primary, target, method, expected in (
((12.34, 18.36, 42.51), (37.25, 46.25, 46.56), "pearson",
(0.6761779252651052, 0.5272701133657985)),
((1, 2, 3, 4, 5), (5, 6, 7, 8, 7), "spearman",
(0.8207826816681233, 0.08858700531354381))):
with self.subTest(primary=primary, target=target, method=method):
assert_allclose(
tissue_correlation(primary, target, method), expected)
@pytest.mark.unit_test
def test_good_dataset_samples_indexes(self):
"""
Test that `good_dataset_samples_indexes` returns correct indices.
"""
self.assertEqual(
good_dataset_samples_indexes(
("a", "e", "i", "k"),
("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l")),
(0, 4, 8, 10))
@pytest.mark.unit_test
def test_build_data_frame(self):
"""
Check that the function builds the correct data frame.
"""
for xdata, ydata, zdata, expected in (
((0.1, 1.1, 2.1), (2.1, 3.1, 4.1), (5.1, 6.1, 7.1),
pandas.DataFrame({
"x": (0.1, 1.1, 2.1), "y": (2.1, 3.1, 4.1),
"z": (5.1, 6.1, 7.1)})),
((0.1, 1.1, 2.1), (2.1, 3.1, 4.1),
((5.1, 6.1, 7.1), (5.2, 6.2, 7.2), (5.3, 6.3, 7.3)),
pandas.DataFrame({
"x": (0.1, 1.1, 2.1), "y": (2.1, 3.1, 4.1),
"z0": (5.1, 6.1, 7.1), "z1": (5.2, 6.2, 7.2),
"z2": (5.3, 6.3, 7.3)}))):
with self.subTest(xdata=xdata, ydata=ydata, zdata=zdata):
self.assertTrue(
build_data_frame(xdata, ydata, zdata).equals(expected))
|