about summary refs log tree commit diff
path: root/scripts/rqtl2_wrapper.R
blob: 283ceef9588105140308f384ed0fead668972442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# This script file contains  the an implementation of qtl mapping using r-qtl2
# For r-qtl1 implementation see: Scripts/rqtl_wrapper.R
# load the library

library(qtl2)
library(rjson)

library(stringi)
library(optparse)


option_list <- list(
  make_option(c("-c", "--cores"), type="integer", default=1, help="No of cores to use while making
  computation"),
make_option(c("-i", "--input_file"), action="store", default=NULL, type='character', help="a yaml or json file with required data to create the cross file"),
make_option(c("-p", "--nperm"), type="integer", default= 1,  action="store_true", help="No  of permutations "),
 make_option(c("-d", "--directory"), action = "store", default = NULL, type = "character", help="Temporary working directory: should also host the input file ."),
 make_option(c("-m", "--method"), action = "store", default = "HK", type = "character", help="Scan Mapping Method - HK (Haley Knott), LMM( Linear Mixed Model ), LOCO (Leave one Chromosome Out)"),
make_option(c("-o", "--output_file"), action="store", default=NULL, type='character', help="a file name of where to write the output json results"),
  make_option(c("--pstrata"), action="store_true", default=NULL, help="Use permutation strata")
)


opt <- parse_args(OptionParser(option_list=option_list))
# check for mandatory args
if(is.null(opt$directory)){
stop("You need  to specify  a working temporary directory which should have be base_dir for the input file")
}

NO_OF_CORES = opt$cores
SCAN_METHOD = opt$method
NO_OF_PERMUTATION = opt$nperm

# get the json file path with pre metadata required to create the cross
# assumption is that the input file should be in the  temp working directory

if (is.null(opt$input_file)) {
  stop("Argument for the Input metadata file is Missing ", call. = FALSE)
} else {
   input_file = opt$input_file
}
if (is.null(opt$output_file)){
stop("You need to provide an output file to write the ouput data")
}

# file_path

input_file_path = file.path(opt$directory, input_file)

if (!(file.exists(input_file_path))) {
  stop("The input file you provided does not exists the temp directory")
} else {
  cat("The input file for the metadata is >>>>>", input_file_path, "\n")
  json_data  = fromJSON(file = input_file_path)
}

# generate random string file paths

genRandomFileName <- function(prefix, file_ext = ".txt") {
  randStr = paste(prefix, stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"), sep =
                    "_")
  return(paste(randStr, file_ext, sep = ""))
}

# TODO work on the optional parameters e.g cores, type of computation

# TODO create temp directory for this workspace pass this as argument

control_file_path  <- file.path(opt$directory,
                                genRandomFileName(prefix = "control_", file_ext = ".json"))

cat("Generated the control file path at", control_file_path, "\n")

if (is.null(json_data$sep)){
cat("Using ',' as a default sep for cross file\n")
json_data$sep = ","
}
if (is.null(json_data$na.strings)){
cat("Using '-' and 'NA' as the default na.strings\n")
 json_data$na.strings = c("-" , "NA")
}

# use this better defaults
default_keys = c(
                "geno_transposed", "founder_geno_transposed",
                "pheno_transposed" , "covar_transposed",
		"phenocovar_transposed")

for (item in default_keys) {
if (!(item %in% names(json_data))){
  cat("Using FALSE as default parameter for ", item, "\n")
  json_data[item] =  FALSE
}
}

generate_cross_object  <- function(control_file_path, json_data) {
 # function to write the cross object from a json data object
  return (
    write_control_file(
      control_file_path,
      crosstype = json_data$crosstype,
      geno_file = json_data$geno_file,
      pheno_file = json_data$pheno_file,
      gmap_file = json_data$geno_map_file,
      pmap_file = json_data$pheno_map_file,
      phenocovar_file = json_data$phenocovar_file,
      geno_codes = json_data$geno_codes,
      alleles = json_data$alleles,
      na.strings = json_data$na.strings,
      geno_transposed = json_data$geno_transposed,
      sex_file = json_data$sex_file,
      founder_geno_file = json_data$founder_geno_file,
      covar_file = json_data$covar_file,
      sex_covar = json_data$sex_covar,
      sex_codes = json_data$sex_codes,
      crossinfo_file = json_data$crossinfo_file,
      crossinfo_covar = json_data$crossinfo_covar,
      crossinfo_codes = json_data$crossinfo_codes,
      xchr = json_data$xchr,
      overwrite = TRUE
    )
  )
}

# generate the cross file

generate_cross_object(control_file_path, json_data)

# read from the cross file path
dataset  <- read_cross2(control_file_path, quiet = FALSE) # replace this with a dynamic path

# check integrity of the cross

cat("Check the integrity of the cross object")
check_cross2(dataset)
if (check_cross2(dataset)) {
  print("Dataset meets required specifications for a cross")
} else {
  print("Dataset does not meet required specifications")
}

# Dataset Summarys
cat("A Summary about the Dataset You Provided\n")
summary(dataset)
n_ind(dataset)
n_chr(dataset)
cat("names of markers in the  object\n")
marker_names(dataset)
cat("names of phenotypes in a the object")
pheno_names(dataset)
cat("IDs for all individuals in the dataset cross object that have genotype data\n")
ind_ids_geno(dataset)
cat(" IDs for all individuals in the dataset object that have phenotype data")
ind_ids_pheno(dataset)
cat("Name of the founder Strains/n")
founders(dataset)

# Function for  computing the genetic probabilities
perform_genetic_pr <- function(cross,
                               cores =  NO_OF_CORES,
			       step=1,
			       map=NULL,
			       use_pseudomarkers=FALSE,
			       map_function=c("haldane", "kosambi", "c-f", "morgan"),
                               error_prob = 0.002
                               ) {
    #' Function to calculate the  genetic probabilities
    #' @description function to perform genetic probabilities
    #' @param  cores number no of cores to use Defaults to "1"
    #' @param map  Genetic map of markers.  defaults to "NONE"
    #' @param  use_pseudomarkers option to insert pseudo markers in the gmap default "FALSE"
    #' @param error_prob
    #' @param map_function Character string indicating the map function to use to convert genetic
    #' @param step for  default "1"
    #' @return a list of three-dimensional arrays of probabilities, individuals x genotypes x pst

  cat("Finding the  genetic Probabilities\n")
  if (use_pseudomarkers){
  cat("Using pseudo markers for genetic probabilites\n")
  map <- insert_pseudomarkers(cross$gmap, step=step)
  }
  return(calc_genoprob(cross, map=map,
                       error_prob=error_prob, map_function=map_function,
		       quiet=FALSE, cores=cores)) 
}

Pr = perform_genetic_pr(dataset)
cat("Summaries  on the genetic probabilites \n")
print(Pr)
summary(Pr)


# perform allele probabilites if cross ways

# convert this to lower
if (dataset$crosstype == "4way"){
  #
  aPr <- genoprob_to_alleleprob(pr)
}

#Function to  Calculate genotyping error LOD scores
cat("Calculate genotype error LOD scores\n")
error_lod <- calc_errorlod(dataset, Pr, quiet = FALSE, cores = NO_OF_CORES)
# combine into one matrix
error_lod <- do.call("cbind", error_lod)
print(error_lod)




#  Perform genome scan
# TODO! rework on this issue
## grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- dataset$pheno
covar <- match(dataset$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(dataset$covar)
Xcovar <- get_x_covar(dataset)
print(pheno)
print(covar)
print(Xcovar)



# TODO: rework on fetching th Xcovar and getting the covar data

# Function to perform scan1


# refactor this to a function


get_kinship <- function(probability, method="LMM"){
if (opt$method == "LMM"){
    kinship = calc_kinship(genome_prob)
} else if (opt$method == "LOCO"){
    kinship = calc_kinship(genome_prob, "loco")
}else {
 kinship = NULL
}
}


if (dataset$crosstype == "4way"){
  kinship <- get_kinship(aPr, opt$method)
} else {
   kinship <- get_kinship(Pr, "loco")
}




perform_genome_scan <- function(cross,
                                genome_prob,
                                method="HK",
                                addcovar = NULL,
				intcovar = NULL,
				kinship = NULL,
				model = c("normal","binary"),
                                Xcovar = NULL) {
    #' perform genome scan
    #' @description  perform scan1 using haley-knott regression, perform scan1 using haley-knott      #'  or linear model, or LOCO linear model
    #' the cross object required to pull the pheno
    #' @param  method to method to perform scan1 either by haley-knott regression(HL),
    #' linear mixed model(LMM) or , for the LOCO method(LOCO)
    #' @param intcovar A numeric optional matrix of interactive covariates.
    #' @param addcovar An optional numeric matrix of additive covariates.
    #' @param Xcovar An optional numeric matrix with additional additive covariates used for null     #'  used for null hypothesis when scanning the X chromosome.
    #' @param model Indicates whether to use a normal model (least squares) or binary model
    #' @return An object of class "scan1"


  if (method == "LMM") {
    # provide parameters for this
    cat("Performing scan1 using Linear mixed model\n")
    out  <- scan1(
      genome_prob,
      cross$pheno,
      kinship = kinship,
      addcovar = covar,
      Xcovar = Xcovar,
      intcovar = intcovar,
      model = model,
      cores = NO_OF_CORES
    )
  }  else if (method == "LOCO") {
    cat("Performing scan1 using Leave one chromosome out\n")
    out <- scan1(
      genome_prob,
      cross$pheno,
      kinship = kinship,
      addcovar = covar,
      intcovar = intcovar,
      model = model,
      Xcovar = Xcovar,
      cores = NO_OF_CORES
    )
  }
  
  else if (method == "HK"){
    cat("Performing scan1 using Haley Knott\n")
    out <- scan1(genome_prob,
                 cross$pheno,
                 addcovar = NULL,
		 intcovar = intcovar,
		 model = model,
                 Xcovar = Xcovar,
		 cores = NO_OF_CORES		 
		 )
  }


  return (out)
}

# Perform the genome scan for the cross object
if (dataset$crosstype == "4way"){
  sex <- (DOex$covar$Sex == "male")*1
  names(sex) <- rownames(dataset$covar)
  sex <- setNames( (dataset$covar$Sex == "male")*1, rownames(DOex$covar))
  scan_results <- perform_genoeme_scan(aPr, dataset, kinship=kinship, method = "LOCO", addcovar = sex)  
} else {
  scan_results <- perform_genome_scan(cross = dataset,
                               genome_prob = Pr,
			       kinship = kinship,
                               method = SCAN_METHOD)
}


scan_results

# plot for the LOD scores from  performing the genome scan
generate_lod_plot <- function(cross, scan_result, method, base_dir = ".") {
  #' @description Plot LOD curves for a genome scan
  #' @param the cross object
  #' @param scan1 results
  #' @param the method used to compute the scan1 results HK,LMM or LOCO
  #' @param base_dir the path to write the generated plot
  #' @return a string with the file path for the plot
  color <- c("slateblue", "violetred", "green3")
  par(mar = c(4.1, 4.1, 1.6, 1.1))
  ymx <- maxlod(scan_result)
  file_name = genRandomFileName(prefix = "RQTL_LOD_SCORE_", file_ext = ".png")
  image_loc = file.path(base_dir , file_name)
  png(image_loc,
      width = 1000,
      height = 600,
      type = 'cairo-png')
  plot(
    scan_result,
    cross$gmap,
    lodcolumn = 1,
    col = color[1],
    main = colnames(cross$pheno)[1],
    ylim = c(0, ymx * 1.02)
  )
  legend(
    "topleft",
    lwd = 2,
    col = color[1],
    method,
    bg = "gray90",
    lty = c(1, 1, 2)
  )
  dev.off()
  return (image_loc)
}


lod_plot_path <- generate_lod_plot(dataset, scan_results, "HK", base_dir=opt$directory)
lod_plot_path


# perform  permutation tests for single-QTL method

perform_permutation_test <- function(cross,
                                     genome_prob,
                                     n_perm,
                                     method = "HKK",
                                     covar = NULL,
                                     Xcovar = NULL,
				     addcovar = NULL,
				     intcovar = NULL,
				     perm_Xsp = FALSE,
				     kinship = NULL,
				     model = c("normal", "binary"),
				     chr_lengths = NULL,
                                     perm_strata = NULL) {

  #' Function to peform permutation tests for single QTL method
  #' @description The scan1perm() function takes the
  #' same arguments as scan1(), plus additional a #rguments to control the permutations:  
  #' @param cross the cross object required to fetch the pheno
  #' @param genome_prob the genomic probability matrix
  #' @param method to computation method used to perform the genomic scan
  #' @param intcovar
  #' @param addcovar
  #' @param Xcovar
  #' @param perm_Xsp  If TRUE, do separate permutations for the autosomes and the X chromosome.
  #' @param perm_strata Vector of strata, for a stratified permutation test.  
  #' @param n_perm Number of permutation replicates.
  #' @param chr_lengths engths of the chromosomes;
  #' @return  object of class "scan1perm". 
  cat("performing permutation test for the cross object\n")
  return (scan1perm(
      genome_prob,
      cross$pheno,
      kinship = kinship,
      Xcovar = Xcovar,
      intcovar = intcovar,
      addcovar = addcovar,
      n_perm = n_perm,
      perm_Xsp = perm_Xsp,
      model = model,
      chr_lengths = chr_lengths,
      cores = NO_OF_CORES
    ))
}




# check if pstrata

if (!(is.null(opt$pstrata)) && (!is.null(Xcovar))){
perm_strata <- mat2strata(Xcovar)
} else {
perm_strata <- NULL
}

perm <- perform_permutation_test(dataset, Pr, n_perm = NO_OF_PERMUTATION,perm_strata = perm_strata, method = "LMM")

# get the permutation summary with a significance threshold
get_lod_significance <- function(perm, threshold = c(0.2, 0.05)){
      cat("Fetch the lod with significance thresholds ", threshold, "\n")
      summary(perm, alpha = threshold)
}
lod_significance <- get_lod_significance(perm)



# get the lod peaks
# TODO fix issue when fetching the gmap or allow to use pseudomarkers

cat("Fetching the lod peaks\n")
lod_peaks = find_peaks(
  scan_results,
  threshold =0,
  map = dataset$gmap,
  cores = NO_OF_CORES
)

lod_peaks
cat("Generating the ouput data as  vector\n")

# get the estimated qtl effects
cat("Getting the estimated qtl effects\n")

get_qtl_effect <- function(chromosome,geno_prob,pheno,covar=NULL,LOCO= NULL){
     cat("Finding the qtl effect\n")
     chr_Pr <- geno_prob[,chromosome]
     if (!is.null(chr_Pr)){
      cat("Finding qtl effect for chromosome ", chromosome, "\n")
     if (!is.null(LOCO)) {
        cat("Finding qtl effect for chromosome ", chromosome, "with LOCO \n")
     kinship <- calc_kinship(chr_Pr, "loco")[[chromosome]]
     return(scan1coef(chr_Pr, pheno, kinship, addcovar=covar))
     }
     else {
      return(scan1coef(chr_Pr, pheno, addcovar=covar))
     }
     }
    return(NULL)
}



# take the first phenotype in the dataset

# grab phenotypes and covariates; ensure that covariates have names attribute
# in this case we are using the first chromosome
pheno <- dataset$pheno[,1]
if (!is.null(dataset$covar) && !is.null(dataset$covar$sex)){
 covar <- match(dataset$covar$sex, c("f", "m")) # make numeric
 names(covar) <- rownames(dataset$covar)
} else {
covar  <- NULL
}
covar


meffects <- c()
meffects_plots <- c()

# TODO add plots for meffects
for (chr in chr_names(dataset)){
  cat("Getting the qtl effect for chromosome", chr, "\n")
   if (dataset$crosstype == "4way"){
     coeff_results <- get_qtl_effect(chr, aPr, pheno, LOCO="LOCO", covar = sex)
     file_name = genRandomFileName(prefix = "RQTL_EFFECT_", file_ext = ".png")
     image_loc = file.path(base_dir , file_name)
     par(mar=c(4.1, 4.1, 0.6, 0.6))
       png(image_loc,
      width = 1000,
      height = 600,
      type = 'cairo-png') 
      plot(
      coeff_results,
      cross$gmap[chr],
     bgcolor="gray95",
     legend="bottomleft"
     )
     meffects <- append(meffects_plots, image_loc)
   } else {
    coeff_results  <- get_qtl_effect(chr, Pr, pheno)
   }
 
    meffects <- append(meffects, coeff_results)
}

output = list(lod_peaks = lod_peaks,
             scan_results =scan_results,
	     genetic_probabilities = Pr,
	     lod_significance = lod_significance,
	     permutation_results = perm,
	     lod_peaks = lod_peaks,
	     chromosomes  = chr_names(dataset),
	     meffects = meffects,
	     meffects_plots = meffects_plots,
	     lod_plot_path =lod_plot_path,
	     scan_method = SCAN_METHOD  
	     )

output_json_data <-toJSON(output)
output_file_path = file.path(opt$directory , opt$output_file)
cat("The output file path generated is",  output_file_path, "\n")
cat("Writing to the output file\n")
write(output_json_data, file=output_file_path)