1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
# This script file contains the an implementation of qtl mapping using r-qtl2
# For r-qtl1 implementation see: Scripts/rqtl_wrapper.R
# load the library
library(qtl2)
library(rjson)
library(stringi)
library(stringr)
options(stringsAsFactors = FALSE)
args = commandArgs(trailingOnly = TRUE)
# get the json file path with pre metadata required to create the cross
if (length(args) == 0) {
stop("Argument for the metadata file is Missing ", call. = FALSE)
} else {
json_file_path = args[1]
}
# TODO validation for the json file
if (!(file.exists(json_file_path))) {
stop("The input file path does not exists")
} else {
str_glue("The input path for the metadata >>>>>>> {json_file_path}")
json_data = fromJSON(file = json_file_path)
}
# generate random string file paths
genRandomFileName <- function(prefix, file_ext = ".txt") {
randStr = paste(prefix, stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"), sep =
"_")
return(paste(randStr, file_ext, sep = ""))
}
# TODO work on the optional parameters e.g cores, type of computation
# TODO create temp directory for this workspace pass this as argument
control_file_path <- file.path("/home/kabui",
genRandomFileName(prefix = "control_", file_ext = ".json"))
str_glue("Generated control file path is {control_file_path}")
if (is.null(json_data$sep)){
cat("Using ',' as a default sep for cross file\n")
json_data$sep = ","
}
if (is.null(json_data$na.strings)){
cat("Using '-' and 'NA' as the default na.strings\n")
json_data$na.strings = c("-" , "NA")
}
# use this better defaults
default_keys = c(
"geno_transposed", "founder_geno_transposed",
"pheno_transposed" , "covar_transposed",
"phenocovar_transposed")
for (item in default_keys) {
if (!(item %in% names(json_data))){
cat("Using FALSE as default parameter for ", item)
cat("\n")
json_data[item] = FALSE
}
}
generate_cross_object <- function(json_data) {
# function to write the cross object from a json data object
return (
write_control_file(
control_file_path,
crosstype = json_data$crosstype,
geno_file = json_data$geno_file,
pheno_file = json_data$pheno_file,
gmap_file = json_data$geno_map_file,
pmap_file = json_data$pheno_map_file,
phenocovar_file = json_data$phenocovar_file,
geno_codes = json_data$geno_codes,
alleles = json_data$alleles,
na.strings = json_data$na.strings,
geno_transposed = json_data$geno_transposed,
sex_file = json_data$sex_file,
founder_geno_file = json_data$founder_geno_file,
covar_file = json_data$covar_file,
sex_covar = json_data$sex_covar,
sex_codes = json_data$sex_codes,
crossinfo_file = json_data$crossinfo_file,
crossinfo_covar = json_data$crossinfo_covar,
crossinfo_codes = json_data$crossinfo_codes,
xchr = json_data$xchr,
overwrite = TRUE
)
)
}
# generate the cross file
generate_cross_object(json_data)
# read from the cross file path
dataset <- read_cross2(control_file_path, quiet = FALSE) # replace this with a dynamic path
# check integrity of the cross
cat("Check the integrity of the cross object")
check_cross2(dataset)
if (check_cross2(dataset)) {
print("Dataset meets required specifications for a cross")
} else {
print("Dataset does not meet required specifications")
}
# Dataset Summarys
cat("A Summary about the Dataset You Provided\n")
summary(dataset)
n_ind(dataset)
n_chr(dataset)
cat("names of markers in the object\n")
marker_names(dataset)
cat("names of phenotypes in a the object")
pheno_names(dataset)
cat("IDs for all individuals in the dataset cross object that have genotype data\n")
ind_ids_geno(dataset)
cat(" IDs for all individuals in the dataset object that have phenotype data")
ind_ids_pheno(dataset)
cat("Name of the founder Strains/n")
founders(dataset)
# Function for computing the genetic probabilities
perform_genetic_pr <- function(cross,
cores = 1,
step=1,
map=NULL,
use_pseudomarkers=FALSE,
map_function=c("haldane", "kosambi", "c-f", "morgan"),
error_prob = 0.002
) {
#' Function to calculate the genetic probabilities
#' @description function to perform genetic probabilities
#' @param cores number no of cores to use Defaults to "1"
#' @param map Genetic map of markers. defaults to "NONE"
#' @param use_pseudomarkers option to insert pseudo markers in the gmap default "FALSE"
#' @param error_prob
#' @param map_function Character string indicating the map function to use to convert genetic
#' @param step for default "1"
#' @return a list of three-dimensional arrays of probabilities, individuals x genotypes x pst
cat("Finding the genetic Probabilities\n")
if (use_pseudomarkers){
map <- insert_pseudomarkers(cross$gmap, step=step)
return(calc_genoprob(cross, map=map,
error_prob=error_prob, map_function=map_function,
quiet=FALSE, cores=cores))
}
else {
return (calc_genoprob(cross, map=map, error_prob=error_prob,
quiet = FALSE, map_function =map_function,
cores = cores))
}}
Pr = perform_genetic_pr(dataset)
cat("Summaries on the genetic probabilites \n")
print(Pr)
summary(Pr)
#calculate genotyping error LOD scores
error_lod <- calc_errorlod(dataset, Pr, quiet = FALSE, cores = 4)
print(error_lod)
# Perform genome scan
# TODO! rework on this issue
## grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- dataset$pheno
covar <- match(dataset$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(dataset$covar)
Xcovar <- get_x_covar(dataset)
print(pheno)
print(covar)
print(Xcovar)
# TODO: rework on fetching th Xcovar and getting the covar data
perform_genome_scan <- function(cross,
genome_prob,
method,
covar = NULL,
xCovar = NULL)
# perform scan1 using haley-knott regression or linear model, or LOCO linear model
{
if (method == "LMM") {
# provide parameters for this
kinship = calc_kinship(genome_prob)
out <- scan1(
genome_prob,
cross$pheno,
kinship = kinship,
addcovar = covar,
Xcovar = Xcovar
)
}
if (method == "LOCO") {
# perform kinship inside better option
kinship = calc_kinship(genome_prob, "loco")
out <- scan1(
genome_prob,
cross$pheno,
kinship = kinship,
addcovar = covar,
Xcovar = Xcovar
)
}
else {
# perform using Haley Knott
out <- scan1(genome_prob,
cross$pheno,
addcovar = NULL,
Xcovar = Xcovar)
}
return (out)
}
results <- perform_genome_scan(cross = dataset,
genome_prob = Pr,
method = "HMM")
results # this should probably return the method use here
# plot for the LOD scores from performing the genome scan
generate_lod_plot <- function(cross, scan_result, method, base_dir = ".") {
# Plot LOD curves for a genome scan
color <- c("slateblue", "violetred", "green3")
par(mar = c(4.1, 4.1, 1.6, 1.1))
ymx <- maxlod(scan_result)
file_name = genRandomFileName(prefix = "RQTL_LOD_SCORE_", file_ext = ".png")
image_loc = file.path(base_dir , file_name)
png(image_loc,
width = 1000,
height = 600,
type = 'cairo-png')
plot(
scan_result,
cross$gmap,
lodcolumn = 1,
col = color[1],
main = colnames(cross$pheno)[1],
ylim = c(0, ymx * 1.02)
)
legend(
"topleft",
lwd = 2,
col = color[1],
method,
bg = "gray90",
lty = c(1, 1, 2)
)
dev.off()
return (image_loc)
}
lod_file_path <- generate_lod_plot(dataset, results, "HK")
lod_file_path
# Note pair scan does not exists in rqtl2
# perform permutation tests for single-QTL method
perform_permutation_test <- function(cross,
genome_prob,
n_perm,
method = "HKK",
covar = NULL,
Xcovar = NULL,
perm_strata = NULL) {
# TODO! add chr_lengths and perm_Xsp
cat("performing permutation tes for the cross object\n")
if (method == "HKK") {
perm <- scan1perm(
genome_prob,
cross$pheno,
Xcovar = Xcovar,
n_perm = n_perm,
perm_strata = perm_strata
)
}
else if (method == "LMM") {
kinship = calc_kinship(genome_prob)
perm <- scan1perm(
genome_prob,
cross$pheno,
kinship = kinship,
Xcovar = Xcovar,
n_perm = n_perm
)
}
else if (method == "LOCO") {
kinship = calc_kinship(genome_prob, "loco")
perm <- scan1perm(
genome_prob,
cross$pheno,
kinship = kinship ,
perm_strata = perm_strata,
Xcovar = Xcovar,
n_perm = n_perm
)
}
return (perm)
}
# TODO ! get these parameters from argument from the user
perm <- perform_permutation_test(dataset, Pr, n_perm = 2, method = "LMM")
# get the permutation summary with a significance threshold
summary(perm, alpha = c(0.2, 0.05))
# function to perform the LOD peaks
find_lod_peaks <-function(scan_results, cross, threshold=4, drop=1.5){
# can this take pmap??? which map should we use???
# TODO add more ags
print("Finding the lod peaks with thresholds n and drop n\n")
return (find_peaks(scan_results, cross$gmap, threshold= threshold, drop=drop))
}
# TODO! add the number of cores
lod_peaks <- find_lod_peaks(results, dataset)
print(lod_peaks)
# TODO! format to return the data ???
|