about summary refs log tree commit diff
path: root/scripts/rqtl2_wrapper.R
blob: bd5b30235bc9cf30c3ac8f8cf2ae3a3fa24cc440 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# This script file contains  the an implementation of qtl mapping using r-qtl2
# For r-qtl1 implementation see: Scripts/rqtl_wrapper.R
# load the library

library(qtl2)
library(rjson)
library(stringi)
library(stringr)

options(stringsAsFactors = FALSE)

args = commandArgs(trailingOnly = TRUE)

# get the json file path with pre metadata required to create the cross


if (length(args) == 0) {
  stop("Argument for the metadata file is Missing ", call. = FALSE)
} else {
  json_file_path = args[1]
}

# TODO validation for the json file


if (!(file.exists(json_file_path))) {
  stop("The input file path does not exists")
} else {
  str_glue("The input path for the metadata >>>>>>> {json_file_path}")
  json_data  = fromJSON(file = json_file_path)
}

# generate random string file path here
genRandomFileName <- function(prefix, file_ext = ".txt") {
  randStr = paste(prefix, stri_rand_strings(1, 9, pattern = "[A-Za-z0-9]"), sep =
                    "_")
  return(paste(randStr, file_ext, sep = ""))
}

# TODO work on the optional parameters

# make assertion for the geno_file and the geno_file exists
# make assertion for the physical map file or the geno map file exists

# create temp directory for this workspace
control_file_path  <- file.path("/home/kabui",
                                genRandomFileName(prefix = "control_", file_ext = ".json"))

str_glue("Generated control file path is  {control_file_path}")
# better defaults for the json file
if (is.null(json_data$sep)){
cat("Using ',' as a default sep for cross file\n")
json_data$sep = ","
}
if (is.null(json_data$na.strings)){
cat("Using '-' and 'NA' as the default na.strings\n")
 json_data$na.strings = c("-" , "NA")
}


# use this better defaults
default_keys = c(
                "geno_transposed", "founder_geno_transposed",
                "pheno_transposed" , "covar_transposed",
		"phenocovar_transposed")

for (item in default_keys) {
if (!(item %in% names(json_data))){
  cat("Using FALSE as default parameter for ", item)
  cat("\n")
  json_data[item] =  FALSE
}
}


generate_cross_object  <- function(json_data) {
 # function to write the cross object from a json data object
  return (
    write_control_file(
      control_file_path,
      crosstype = json_data$crosstype,
      geno_file = json_data$geno_file,
      pheno_file = json_data$pheno_file,
      gmap_file = json_data$geno_map_file,
      pmap_file = json_data$pheno_map_file,
      phenocovar_file = json_data$phenocovar_file,
      geno_codes = json_data$geno_codes,
      alleles = json_data$alleles,
      na.strings = json_data$na.strings,
      geno_transposed = json_data$geno_transposed,
      sex_file = json_data$sex_file,
      founder_geno_file = json_data$founder_geno_file,
      covar_file = json_data$covar_file,
      sex_covar = json_data$sex_covar,
      sex_codes = json_data$sex_codes,
      crossinfo_file = json_data$crossinfo_file,
      crossinfo_covar = json_data$crossinfo_covar,
      crossinfo_codes = json_data$crossinfo_codes,
      xchr = json_data$xchr,
      overwrite = TRUE
    )
  )
}


# alternatively pass a  yaml file with

generate_cross_object(json_data)

dataset  <- read_cross2(control_file_path, quiet = FALSE) # replace this with a dynamic path
# check integrity of the cross


cat("Check the integrity of the cross object")
check_cross2(dataset)
if (check_cross2(dataset)) {
  print("Dataset meets required specifications for a cross")
} else {
  print("Dataset does not meet required specifications")
}

# Dataset Summarys
cat("A Summary about the Dataset You Provided\n")
summary(dataset)
n_ind(dataset)
n_chr(dataset)
cat("names of markers in the  object\n")
marker_names(dataset)
cat("names of phenotypes in a the object")
pheno_names(dataset)
cat("IDs for all individuals in the dataset cross object that have genotype data\n")
ind_ids_geno(dataset)
cat(" IDs for all individuals in the dataset object that have phenotype data")
ind_ids_pheno(dataset)
cat("Name of the founder Strains/n")
founders(dataset)

# Work on computing the genetic probabilities


analysis_type <- "single"


perform_genetic_pr <- function(cross,
                               cores = 1,
                               error_prob = 0.002,
                               analysis_type = "single") {
  # improve on this
  if (analysis_type == "single") {
    pr <- calc_genoprob(cross,
                        error_prob = error_prob,
                        quiet = FALSE,
                        cores = cores)
    return (pr)
  }
}

# get the genetic probability

Pr = perform_genetic_pr(dataset)
cat("Summaries  on the genetic probabilites \n")
print(Pr)
summary(Pr)


#calculate genotyping error LOD scores, to help identify potential genotyping errors (and problem markers and/or individuals
error_lod <- calc_errorlod(dataset, Pr, quiet = FALSE, cores = 4)
print(error_lod)


#  Perform genome scan

# rework on this issue
## grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- dataset$pheno
covar <- match(dataset$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(dataset$covar)
Xcovar <- get_x_covar(dataset)

print(pheno)
print(covar)
print(Xcovar)

# TODO: rework on fetching th Xcovar and getting the covar data



perform_genome_scan <- function(cross,
                                genome_prob,
                                method,
                                covar = NULL,
                                xCovar = NULL)
  # perform scan1 using haley-knott regression or linear model, or LOCO linear model
{
  if (method == "LMM") {
    # provide parameters for this
    kinship = calc_kinship(genome_prob)
    out  <- scan1(
      genome_prob,
      cross$pheno,
      kinship = kinship,
      addcovar = covar,
      Xcovar = Xcovar
    )
  }
  
  if (method == "LOCO") {
    # perform kinship inside better option
    kinship = calc_kinship(genome_prob, "loco")
    out <- scan1(
      genome_prob,
      cross$pheno,
      kinship = kinship,
      addcovar = covar,
      Xcovar = Xcovar
    )
  }
  else {
    # perform using Haley Knott
    out <- scan1(genome_prob,
                 cross$pheno,
                 addcovar = NULL,
                 Xcovar = Xcovar)
  }
  return (out)
}

results <- perform_genome_scan(cross = dataset,
                               genome_prob = Pr,
                               method = "HMM")


results # this should probably return the method use here

# plot for the LOD scores from  performing the genome scan

generate_lod_plot <- function(cross, scan_result, method, base_dir = ".") {
  # Plot LOD curves for a genome scan
  color <- c("slateblue", "violetred", "green3")
  par(mar = c(4.1, 4.1, 1.6, 1.1))
  ymx <- maxlod(scan_result)
  file_name = genRandomFileName(prefix = "RQTL_LOD_SCORE_", file_ext = ".png")
  image_loc = file.path(base_dir , file_name)
  png(image_loc,
      width = 1000,
      height = 600,
      type = 'cairo-png')
  plot(
    scan_result,
    cross$gmap,
    lodcolumn = 1,
    col = color[1],
    main = colnames(cross$pheno)[1],
    ylim = c(0, ymx * 1.02)
  )
  legend(
    "topleft",
    lwd = 2,
    col = color[1],
    method,
    bg = "gray90",
    lty = c(1, 1, 2)
  )
  dev.off()
  return (image_loc)
}

lod_file_path <- generate_lod_plot(dataset, results, "HK")
lod_file_path

# work on 2 pair scan multiple pair scan # multiple pair scan

# Q  how do we perform geno scan with Genome scan with a single-QTL model ????

# perform  permutation tests for single-QTL method


perform_permutation_test <- function(cross,
                                     genome_prob,
                                     n_perm,
                                     method = "HKK",
                                     covar = NULL,
                                     Xcovar = NULL,
                                     perm_strata = NULL) {
				     
  # TODO! add chr_lengths and perm_Xsp
  
  if (method == "HKK") {
    perm <- scan1perm(
      genome_prob,
      cross$pheno,
      Xcovar = Xcovar,
      n_perm = n_perm,
      perm_strata = perm_strata
    )
  }
  else if (method == "LMM") {
    kinship = calc_kinship(genome_prob)
    perm <- scan1perm(
      genome_prob,
      cross$pheno,
      kinship = kinship,
      Xcovar = Xcovar,
      n_perm = n_perm
    )
  }
  else if (method == "LOCO") {
    kinship = calc_kinship(genome_prob, "loco")
    perm <- scan1perm(
      genome_prob,
      cross$pheno,
      kinship = kinship ,
      perm_strata = perm_strata,
      Xcovar = Xcovar,
      n_perm = n_perm
    )
  }
  return (perm)
}

# TODO ! get these parameters from argument from the user
perm <- perform_permutation_test(dataset, Pr, n_perm = 2, method = "LMM")
# get the permutation summary with a significance threshold
summary(perm, alpha = c(0.2, 0.05))

#  function to perform the LOD peaks

find_lod_peaks <-function(scan_results, cross, threshold=4,  drop=1.5){
# can this take pmap??? which map should we use???
# TODO add more ags
print("Finding the lod peaks with thresholds n and drop n\n")
return (find_peaks(scan_results, cross$gmap, threshold= threshold, drop=drop))
}
# TODO! add the number of cores
lod_peaks <- find_lod_peaks(results, dataset)
print(lod_peaks)

# TODO! format to return the data ???