1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
# This file contains an implementation of qtl mapping using r-qtl2
# For r-qtl1 implementation see: ./rqtl_wrapper.R
library(qtl2)
library(rjson)
library(stringi)
library(optparse)
option_list <- list(
make_option(c("-d", "--directory"), action = "store", default = NULL, type = "character", help="Temporary working directory: should also host the input file ."),
make_option(c("-i", "--input_file"), action="store", default=NULL, type='character', help="a yaml or json file with required data to create the cross file"),
make_option(c("-o", "--output_file"), action="store", default=NULL, type='character', help="a file path of where to write the output json results"),
make_option(c("-c", "--cores"), type="integer", default=1, help="No of cores to use while making
computation"),
make_option(c("-p", "--nperm"), type="integer", default= 1, action="store_true", help="No of permutations "),
make_option(c("-m", "--method"), action = "store", default = "HK", type = "character", help="Scan Mapping Method - HK (Haley Knott), LMM( Linear Mixed Model ), LOCO (Leave one Chromosome Out)"),
make_option(c("--pstrata"), action="store_true", default=NULL, help="Use permutation strata"),
make_option(c("-t", "--threshold"), type="integer", default= 1, action="store_true", help="Minimum LOD score for a Peak")
)
opt_parser = OptionParser(option_list=option_list);
opt <- parse_args(opt_parser)
NO_OF_CORES = opt$cores
SCAN_METHOD = opt$method
NO_OF_PERMUTATION = opt$nperm
# Step: check for mandatory file paths
# NOTE this is the working dir where the cross file will be generated
# NOTE this is where the cross file is generated
if(is.null(opt$directory) || !(dir.exists(opt$directory))){
# check if directory exists
print_help(opt_parser)
stop("The working directory does not exists or is NULL\n")
}
INPUT_FILE_PATH = opt$input_file
OUTPUT_FILE_PATH = opt$output_file
if (!(file.exists(INPUT_FILE_PATH))) {
print_help(opt_parser)
stop("The input file", INPUT_FILE_PATH, " you provided does not exists\n")
} else {
cat("Input file exists Reading the input file .... \n")
}
if (!(file.exists(OUTPUT_FILE_PATH))) {
print_help(opt_parser)
stop("The output file ",OUTPUT_FILE_PATH, " you provided does not exists\n")
} else {
cat("Output file exists ...", OUTPUT_FILE_PATH, "\n")
}
# Utility function to generate random file names of size n:
genRandomFileName <- function(prefix, string_size = 9 , file_ext = ".txt") {
randStr = paste(prefix, stri_rand_strings(1, string_size, pattern = "[A-Za-z0-9]"), sep =
"_")
return(paste(randStr, file_ext, sep = ""))
}
# Step: Generate the control file name
control_file_path <- file.path(opt$directory,
genRandomFileName(prefix = "control", file_ext = ".json"))
cat("Generated the control file path at ", control_file_path, "\n")
# Step: Reading and Parsing the input file
cat("Reading and parsing the input file \n")
json_data = fromJSON(file = INPUT_FILE_PATH)
if (is.null(json_data$sep)){
cat("Using ',' as a default sep for cross file\n")
json_data$sep = ","
}
if (is.null(json_data$na.strings)){
cat("Using '-' and 'NA' as the default na.strings\n")
json_data$na.strings = c("-" , "NA")
}
default_keys = c(
"geno_transposed", "founder_geno_transposed",
"pheno_transposed" , "covar_transposed",
"phenocovar_transposed")
for (item in default_keys) {
if (!(item %in% names(json_data))){
cat("Using FALSE as default parameter for ", item, "\n")
json_data[item] = FALSE
}
}
# Note the files below should be in the same directory as the location for the crosss file
generate_cross_object <- function(control_file_path, json_data) {
# function to write the cross object from a json data object
return (
write_control_file(
control_file_path,
crosstype = json_data$crosstype,
geno_file = json_data$geno_file,
pheno_file = json_data$pheno_file,
gmap_file = json_data$geno_map_file,
pmap_file = json_data$physical_map_file,
phenocovar_file = json_data$phenocovar_file,
geno_codes = json_data$geno_codes,
alleles = json_data$alleles,
na.strings = json_data$na.strings,
geno_transposed = json_data$geno_transposed,
sex_file = json_data$sex_file,
founder_geno_file = json_data$founder_geno_file,
covar_file = json_data$covar_file,
sex_covar = json_data$sex_covar,
sex_codes = json_data$sex_codes,
crossinfo_file = json_data$crossinfo_file,
crossinfo_covar = json_data$crossinfo_covar,
crossinfo_codes = json_data$crossinfo_codes,
xchr = json_data$xchr,
overwrite = TRUE
)
)
}
# Step: generate the cross file
cat("Generating the cross object at ", control_file_path, "\n")
generate_cross_object(control_file_path, json_data)
cat("reading the cross object from", control_file_path, "\n")
cross <- read_cross2(control_file_path, quiet = FALSE) # replace this with a dynamic path
# check integrity of the cross
cat("Check the integrity of the cross object")
check_cross2(cross)
if (check_cross2(cross)) {
print("Cross meets required specifications for a cross")
} else {
print("Cross does not meet required specifications")
}
# Cross Summarys
cat("A Summary about the Cross You Provided\n")
summary(cross)
n_ind(cross)
n_chr(cross)
cat("names of markers in the object\n")
marker_names(cross)
cat("names of phenotypes in a the object")
pheno_names(cross)
cat("IDs for all individuals in the cross cross object that have genotype data\n")
ind_ids_geno(cross)
cat(" IDs for all individuals in the cross object that have phenotype data")
ind_ids_pheno(cross)
cat("Name of the founder Strains/n")
founders(cross)
# Function for computing the genetic probabilities
perform_genetic_pr <- function(cross,
cores = NO_OF_CORES,
step=1,
map=NULL,
map_function=c("haldane", "kosambi", "c-f", "morgan"),
error_prob = 0.002
) {
#' Function to calculate the genetic probabilities
#' @description function to perform genetic probabilities
#' @param cores number no of cores to use Defaults to "1"
#' @param map Genetic map of markers. defaults to "NONE"
#' @param use_pseudomarkers option to insert pseudo markers in the gmap default "FALSE"
#' @param error_prob
#' @param map_function Character string indicating the map function to use to convert genetic
#' @param step for default "1"
#' @return a list of three-dimensional arrays of probabilities, individuals x genotypes x pst
return(calc_genoprob(cross, map=map,
error_prob=error_prob, map_function=map_function,
quiet=FALSE, cores=cores))
}
#Step: insert pseudomarkers to genetic map
# TODO need to review this to match rqtl1
cat("Inserting pseudomarkers to the genetic map with steps", 1 , "and stepwidth" , "fixed\n")
MAP <- insert_pseudomarkers(cross$gmap, step= 1, stepwidth = "fixed", cores = NO_OF_CORES)
# Step: calculate the genetic probabilities
cat("Calculating the genetic probabilities\n")
Pr = perform_genetic_pr(cross)
# Step: perform allele probabilites if cross ways
if (cross$crosstype == "4way"){
cat("Calculating Allele Genetic probability for 4way cross\n")
aPr <- genoprob_to_alleleprob(pr)
}
#Function to Calculate genotyping error LOD scores
cat("Calculating the genotype error LOD scores\n")
error_lod <- calc_errorlod(cross, Pr, quiet = FALSE, cores = NO_OF_CORES)
# combine into one matrix
error_lod <- do.call("cbind", error_lod)
## grab phenotypes and covariates; ensure that covariates have names attribute
# TODO rework on this
cat("Getting the phenotypes and covariates\n")
pheno <- cross$pheno
covar <- match(cross$covar$sex, c("f", "m")) # make numeric
covar
if (!is.null(covar)){
names(covar) <- rownames(cross$covar)
}
print("The covariates are")
covar
Xcovar <- get_x_covar(cross)
print("The Xcovar are ")
print(Xcovar)
# Function to calculate the kinship
get_kinship <- function(probability, method="LMM"){
if (opt$method == "LMM"){
kinship = calc_kinship(probability)
} else if (opt$method == "LOCO"){
kinship = calc_kinship(probability, "loco")
}else {
kinship = NULL
}
}
cat("Calculating the kinship for the genetic probability\n")
if (cross$crosstype == "4way"){
kinship <- get_kinship(aPr, opt$method)
} else {
kinship <- get_kinship(Pr, "loco")
}
# Function to perform genome scan
perform_genome_scan <- function(cross,
genome_prob,
method,
addcovar = NULL,
intcovar = NULL,
kinship = NULL,
model = c("normal","binary"),
Xcovar = NULL) {
#' perform genome scan
#' @description perform scan1 using haley-knott regression, perform scan1 using haley-knott #' or linear model, or LOCO linear model
#' the cross object required to pull the pheno
#' @param method to method to perform scan1 either by haley-knott regression(HL),
#' linear mixed model(LMM) or , for the LOCO method(LOCO)
#' @param intcovar A numeric optional matrix of interactive covariates.
#' @param addcovar An optional numeric matrix of additive covariates.
#' @param Xcovar An optional numeric matrix with additional additive covariates used for null #' used for null hypothesis when scanning the X chromosome.
#' @param model Indicates whether to use a normal model (least squares) or binary model
#' @return An object of class "scan1"
if (method == "LMM") {
# provide parameters for this
cat("Performing scan1 using Linear mixed model\n")
out <- scan1(
genome_prob,
cross$pheno,
kinship = kinship,
addcovar = covar,
Xcovar = Xcovar,
intcovar = intcovar,
model = model,
cores = NO_OF_CORES
)
} else if (method == "LOCO") {
cat("Performing scan1 using Leave one chromosome out\n")
out <- scan1(
genome_prob,
cross$pheno,
kinship = kinship,
addcovar = covar,
intcovar = intcovar,
model = model,
Xcovar = Xcovar,
cores = NO_OF_CORES
)
}
else if (method == "HK"){
cat("Performing scan1 using Haley Knott\n")
out <- scan1(genome_prob,
cross$pheno,
addcovar = NULL,
intcovar = intcovar,
model = model,
Xcovar = Xcovar,
cores = NO_OF_CORES
)
}
return (out)
}
# Perform the genome scan for the cross object
if (cross$crosstype == "4way"){
sex <- (cross$covar$Sex == "male")*1
names(sex) <- rownames(cross$covar)
sex <- setNames( (cross$covar$Sex == "male")*1, rownames(cross$covar))
scan_results <- perform_genome_scan(aPr, cross, kinship=kinship, method = "LOCO", addcovar = sex)
} else {
scan_results <- perform_genome_scan(cross = cross,
genome_prob = Pr,
kinship = kinship,
method = SCAN_METHOD)
}
scan_file <- file.path(opt$directory, "scan_results.csv")
write.csv(scan_results, scan_file)
# function plot for the LOD scores from performing the genome scan
generate_lod_plot <- function(cross, scan_result, method, base_dir = ".") {
#' @description Plot LOD curves for a genome scan
#' @param the cross object
#' @param scan1 results
#' @param the method used to compute the scan1 results HK,LMM or LOCO
#' @param base_dir the path to write the generated plot
#' @return a string with the file path for the plot
cat("Generting the lod plot for the LOD scores\n")
color <- c("slateblue", "violetred", "green3")
par(mar = c(4.1, 4.1, 1.6, 1.1))
ymx <- maxlod(scan_result)
file_name = genRandomFileName(prefix = "RQTL_LOD_SCORE_", file_ext = ".png")
image_loc = file.path(base_dir , file_name)
png(image_loc,
width = 1000,
height = 600,
type = 'cairo-png')
plot(
scan_result,
cross$gmap,
lodcolumn = 1,
col = color[1],
main = colnames(cross$pheno)[1],
ylim = c(0, ymx * 1.02)
)
legend(
"topleft",
lwd = 2,
col = color[1],
method,
bg = "gray90",
lty = c(1, 1, 2)
)
dev.off()
return (image_loc)
}
lod_plot_path <- generate_lod_plot(cross, scan_results, "HK", base_dir=opt$directory)
cat("Generated the lod plot at ", lod_plot_path, "\n")
# function: perform permutation tests for single-QTL method
perform_permutation_test <- function(cross,
genome_prob,
n_perm,
method = opt$method,
covar = NULL,
Xcovar = NULL,
addcovar = NULL,
intcovar = NULL,
perm_Xsp = FALSE,
kinship = NULL,
model = c("normal", "binary"),
chr_lengths = NULL,
perm_strata = NULL) {
#' Function to peform permutation tests for single QTL method
#' @description The scan1perm() function takes the
#' same arguments as scan1(), plus additional a #rguments to control the permutations:
#' @param cross the cross object required to fetch the pheno
#' @param genome_prob the genomic probability matrix
#' @param method to computation method used to perform the genomic scan
#' @param intcovar
#' @param addcovar
#' @param Xcovar
#' @param perm_Xsp If TRUE, do separate permutations for the autosomes and the X chromosome.
#' @param perm_strata Vector of strata, for a stratified permutation test.
#' @param n_perm Number of permutation replicates.
#' @param chr_lengths engths of the chromosomes;
#' @return object of class "scan1perm".
cat("performing permutation test for the cross object with permutations", n_perm, "\n")
return (scan1perm(
genome_prob,
cross$pheno,
kinship = kinship,
Xcovar = Xcovar,
intcovar = intcovar,
addcovar = addcovar,
n_perm = n_perm,
perm_Xsp = perm_Xsp,
model = model,
chr_lengths = chr_lengths,
cores = NO_OF_CORES
))
}
# check if pstrata
if (!(is.null(opt$pstrata)) && (!is.null(Xcovar))){
perm_strata <- mat2strata(Xcovar)
} else {
perm_strata <- NULL
}
# Step: Performing the permutation test
perm <- perform_permutation_test(cross, Pr, n_perm = NO_OF_PERMUTATION,perm_strata = perm_strata, method = opt$method)
# get the permutation summary with a significance threshold
get_lod_significance <- function(perm, threshold = c(0.01, 0.05)){
cat("Getting the permutation summary with significance thresholds as ", threshold, "\n")
summary(perm, alpha = threshold)
}
lod_significance <- get_lod_significance(perm, threshold =c(0.63, 0.05, 0.01))
permutation_results_file = file.path(opt$directory, "permutation.csv")
significance_results_file = file.path(opt$directory, "significance.csv")
write.csv(lod_significance, significance_results_file)
write.csv(perm, permutation_results_file)
# step: get the lod peaks
# TODO fix the threshold here
cat("Fetching the lod peaks with threshold", opt$threshold, "\n")
lod_peaks = find_peaks(
scan_results,
threshold =opt$threshold,
map = cross$gmap,
cores = NO_OF_CORES
)
# step: get the estimated qtl effects
get_qtl_effect <- function(chromosome,geno_prob,pheno,covar=NULL,LOCO= NULL){
cat("Finding the qtl effect\n")
chr_Pr <- geno_prob[,chromosome]
if (!is.null(chr_Pr)){
cat("Finding qtl effect for chromosome ", chromosome, "\n")
if (!is.null(LOCO)) {
cat("Finding qtl effect for chromosome ", chromosome, "with LOCO \n")
kinship <- calc_kinship(chr_Pr, "loco")[[chromosome]]
return(scan1coef(chr_Pr, pheno, kinship, addcovar=covar))
}
else {
return(scan1coef(chr_Pr, pheno, addcovar=covar))
}
}
return(NULL)
}
# take the first phenotype in the cross
# grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- cross$pheno[,1]
if (!is.null(cross$covar) && !is.null(cross$covar$sex)){
covar <- match(cross$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(cross$covar)
} else {
covar <- NULL
}
meffects <- c()
meffects_plots <- c()
# TODO add plots for meffects
for (chr in chr_names(cross)){
cat("Getting the qtl effect for chromosome", chr, "\n")
if (cross$crosstype == "4way"){
coeff_results <- get_qtl_effect(chr, aPr, pheno, LOCO="LOCO", covar = sex)
cat("Generating the qtl effects plots\n")
file_name = genRandomFileName(prefix = "RQTL_EFFECT_", file_ext = ".png")
image_loc = file.path(base_dir , file_name)
par(mar=c(4.1, 4.1, 0.6, 0.6))
png(image_loc,
width = 1000,
height = 600,
type = 'cairo-png')
plot(
coeff_results,
cross$gmap[chr],
bgcolor="gray95",
legend="bottomleft"
)
meffects <- append(meffects_plots, image_loc)
} else {
coeff_results <- get_qtl_effect(chr, Pr, pheno)
}
meffects <- append(meffects, coeff_results)
}
gmap_file <- file.path(opt$directory, json_data$geno_map_file)
pmap_file <- file.path(opt$directory, json_data$physical_map_file)
output = list(lod_peaks = lod_peaks,
scan_results =scan_results,
genetic_probabilities = Pr,
lod_significance = lod_significance,
permutation_results = perm,
lod_peaks = lod_peaks,
permutation_file = permutation_results_file,
significance_file = significance_results_file,
scan_file = scan_file,
chromosomes = chr_names(cross),
error_lod = error_lod,
gmap_file = gmap_file,
pmap_file = pmap_file,
meffects_plots = meffects_plots,
lod_plot_path =lod_plot_path,
scan_method = SCAN_METHOD
)
output_json_data <-toJSON(output)
cat("The output file path generated is", OUTPUT_FILE_PATH, "\n")
cat("Writing to the output file\n")
write(output_json_data, file=OUTPUT_FILE_PATH)
|