aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations/rust_correlation.py
blob: 5ce097d53a7ef6114ef02cfd79c726d42c89342d (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""module contains code integration  correlation implemented in rust here

https://github.com/Alexanderlacuna/correlation_rust

"""
import subprocess
import json
import csv
import os

from flask import current_app

from gn3.computations.qtlreaper import create_output_directory
from gn3.chancy import random_string
from gn3.settings import TMPDIR


def generate_input_files(dataset: list[str],
                         output_dir: str = TMPDIR) -> tuple[str, str]:
    """function generates outputfiles and inputfiles"""
    tmp_dir = f"{output_dir}/correlation"
    create_output_directory(tmp_dir)
    tmp_file = os.path.join(tmp_dir, f"{random_string(10)}.txt")
    with open(tmp_file, "w", encoding="utf-8") as op_file:
        writer = csv.writer(
            op_file, delimiter=",", dialect="unix", quotechar="",
            quoting=csv.QUOTE_NONE, escapechar="\\")
        writer.writerows(dataset)

    return (tmp_dir, tmp_file)


def generate_json_file(
        tmp_dir, tmp_file, method, delimiter, x_vals) -> tuple[str, str]:
    """generating json input file required by cargo"""
    tmp_json_file = os.path.join(tmp_dir, f"{random_string(10)}.json")
    output_file = os.path.join(tmp_dir, f"{random_string(10)}.txt")

    with open(tmp_json_file, "w", encoding="utf-8") as outputfile:
        json.dump({
            "method": method,
            "file_path": tmp_file,
            "x_vals": x_vals,
            "sample_values": "bxd1",
            "output_file": output_file,
            "file_delimiter": delimiter
        }, outputfile)
    return (output_file, tmp_json_file)


def run_correlation(
        dataset, trait_vals: str, method: str, delimiter: str,
        corr_type: str = "sample", top_n: int = 500):
    """entry function to call rust correlation"""

    # pylint: disable=too-many-arguments
    correlation_command = current_app.config["CORRELATION_COMMAND"] # make arg?
    (tmp_dir, tmp_file) = generate_input_files(dataset)
    (output_file, json_file) = generate_json_file(
        tmp_dir=tmp_dir, tmp_file=tmp_file, method=method, delimiter=delimiter,
        x_vals=trait_vals)
    command_list = [correlation_command, json_file, TMPDIR]
    try:
        subprocess.run(command_list, check=True, capture_output=True)
    except subprocess.CalledProcessError as cpe:
        actual_command = (
            os.readlink(correlation_command)
            if os.path.islink(correlation_command)
            else correlation_command)
        raise Exception(command_list, actual_command, cpe.stdout) from cpe

    return parse_correlation_output(output_file, corr_type, top_n)


def parse_correlation_output(result_file: str,
                             corr_type: str, top_n: int = 500) -> dict:
    """parse file output """
    # current types are sample and tissue
    def __parse_line__(line):
        (trait_name, corr_coeff, p_val, num_overlap) = line.rstrip().split(",")
        if corr_type == "sample":
            return (trait_name, {
                "num_overlap": num_overlap,
                "corr_coefficient": corr_coeff,
                "p_value": p_val
            })

        if corr_type == "tissue":
            return (
                trait_name,
                {
                    "tissue_corr": corr_coeff,
                    "tissue_number": num_overlap,
                    "tissue_p_val": p_val
                })

        return tuple(trait_name, {})

    with open(result_file, "r", encoding="utf-8") as file_reader:
        return dict([
            __parse_line__(line)
            for idx, line in enumerate(file_reader) if idx < top_n])

    return {}


def get_samples(all_samples: dict[str, str],
                base_samples: list[str],
                excluded: list[str]):
    """filter null samples and excluded samples"""

    data = {}

    if base_samples:
        fls = [
            sm for sm in base_samples if sm not in excluded]
        for sample in fls:
            if sample in all_samples:
                smp_val = all_samples[sample].strip()
                if smp_val.lower() != "x":
                    data[sample] = float(smp_val)

        return data

    return({key: float(val.strip()) for (key, val) in all_samples.items()
            if key not in excluded and val.lower().strip() != "x"})


def get_sample_corr_data(sample_type: str,
                         sample_data: dict[str, str],
                         dataset_samples: list[str]) -> dict[str, str]:
    """dependeing on the sample_type fetch the correct sample data """

    if sample_type == "samples_primary":

        data = get_samples(all_samples=sample_data,
                           base_samples=dataset_samples, excluded=[])

    elif sample_type == "samples_other":
        data = get_samples(
            all_samples=sample_data,
            base_samples=[],
            excluded=dataset_samples)
    else:
        data = get_samples(
            all_samples=sample_data, base_samples=[], excluded=[])
    return data


def parse_tissue_corr_data(symbol_name: str,
                           symbol_dict: dict,
                           dataset_symbols: dict,
                           dataset_vals: dict):
    """parset tissue data input"""

    results = None

    if symbol_name and symbol_name.lower() in symbol_dict:
        x_vals = [float(val) for val in symbol_dict[symbol_name.lower()]]

        data = []

        for (trait, symbol) in dataset_symbols.items():
            try:
                corr_vals = dataset_vals.get(symbol.lower())

                if corr_vals:
                    data.append([str(trait)] + corr_vals)

            except AttributeError:
                pass

        results = (x_vals, data)

    return results