1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
|
"""
This module deals with partial correlations.
It is an attempt to migrate over the partial correlations feature from
GeneNetwork1.
"""
import math
from functools import reduce, partial
from typing import Any, Tuple, Union, Sequence
import numpy
import pandas
import pingouin
from scipy.stats import pearsonr, spearmanr
from gn3.settings import TEXTDIR
from gn3.random import random_string
from gn3.function_helpers import compose
from gn3.data_helpers import parse_csv_line
from gn3.db.traits import export_informative
from gn3.db.datasets import retrieve_trait_dataset
from gn3.db.partial_correlations import traits_info, traits_data
from gn3.db.species import species_name, translate_to_mouse_gene_id
from gn3.db.correlations import (
get_filename,
fetch_all_database_data,
check_for_literature_info,
fetch_tissue_correlations,
fetch_literature_correlations,
check_symbol_for_tissue_correlation,
fetch_gene_symbol_tissue_value_dict_for_trait)
def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
"""
Fetches data for the control traits.
This migrates `web/webqtl/correlation/correlationFunction.controlStrain` in
GN1, with a few modifications to the arguments passed in.
PARAMETERS:
controls: A map of sample names to trait data. Equivalent to the `cvals`
value in the corresponding source function in GN1.
sampleslist: A list of samples. Equivalent to `strainlst` in the
corresponding source function in GN1
"""
def __process_control__(trait_data):
def __process_sample__(acc, sample):
if sample in trait_data["data"].keys():
sample_item = trait_data["data"][sample]
val = sample_item["value"]
if val is not None:
return (
acc[0] + (sample,),
acc[1] + (val,),
acc[2] + (sample_item["variance"],))
return acc
return reduce(
__process_sample__, sampleslist, (tuple(), tuple(), tuple()))
return reduce(
lambda acc, item: (
acc[0] + (item[0],),
acc[1] + (item[1],),
acc[2] + (item[2],),
acc[3] + (len(item[0]),),
),
[__process_control__(trait_data) for trait_data in controls],
(tuple(), tuple(), tuple(), tuple()))
def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
"""
Build a sequence of dictionaries from a sequence of separate sequences of
samples, values and variances.
This is a partial migration of
`web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
This implementation extracts code that will find common use, and that will
find use in more than one place.
"""
return tuple(
{
sample: {"sample_name": sample, "value": val, "variance": var}
for sample, val, var in zip(*trait_line)
} for trait_line in zip(*(samples_vals_vars[0:3])))
def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
"""
Corrects sample_names, values and variance such that they all contain only
those samples that are common to the reference trait and all control traits.
This is a partial migration of the
`web.webqtl.correlation.correlationFunction.fixStrain` function in GN1.
"""
primary_samples = tuple(
present[0] for present in
((sample, all(sample in control.keys() for control in control_traits))
for sample in primary_trait.keys())
if present[1])
control_vals_vars: tuple = reduce(
lambda acc, x: (acc[0] + (x[0],), acc[1] + (x[1],)),
((item["value"], item["variance"])
for sublist in [tuple(control.values()) for control in control_traits]
for item in sublist),
(tuple(), tuple()))
return (
primary_samples,
tuple(primary_trait[sample]["value"] for sample in primary_samples),
control_vals_vars[0],
tuple(primary_trait[sample]["variance"] for sample in primary_samples),
control_vals_vars[1])
def find_identical_traits(
primary_name: str, primary_value: float, control_names: Tuple[str, ...],
control_values: Tuple[float, ...]) -> Tuple[str, ...]:
"""
Find traits that have the same value when the values are considered to
3 decimal places.
This is a migration of the
`web.webqtl.correlation.correlationFunction.findIdenticalTraits` function in
GN1.
"""
def __merge_identicals__(
acc: Tuple[str, ...],
ident: Tuple[str, Tuple[str, ...]]) -> Tuple[str, ...]:
return acc + ident[1]
def __dictify_controls__(acc, control_item):
ckey = tuple("{:.3f}".format(item) for item in control_item[0])
return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
return (reduce(## for identical control traits
__merge_identicals__,
(item for item in reduce(# type: ignore[var-annotated]
__dictify_controls__, zip(control_values, control_names),
{}).items() if len(item[1]) > 1),
tuple())
or
reduce(## If no identical control traits, try primary and controls
__merge_identicals__,
(item for item in reduce(# type: ignore[var-annotated]
__dictify_controls__,
zip((primary_value,) + control_values,
(primary_name,) + control_names), {}).items()
if len(item[1]) > 1),
tuple()))
def tissue_correlation(
primary_trait_values: Tuple[float, ...],
target_trait_values: Tuple[float, ...],
method: str) -> Tuple[float, float]:
"""
Compute the correlation between the primary trait values, and the values of
a single target value.
This migrates the `cal_tissue_corr` function embedded in the larger
`web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
GeneNetwork1.
"""
def spearman_corr(*args):
result = spearmanr(*args)
return (result.correlation, result.pvalue)
method_fns = {"pearson": pearsonr, "spearman": spearman_corr}
assert len(primary_trait_values) == len(target_trait_values), (
"The lengths of the `primary_trait_values` and `target_trait_values` "
"must be equal")
assert method in method_fns.keys(), (
"Method must be one of: {}".format(",".join(method_fns.keys())))
corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
return (corr, pvalue)
def batch_computed_tissue_correlation(
primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
method: str) -> Tuple[dict, dict]:
"""
This is a migration of the
`web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
GeneNetwork1
"""
def __corr__(acc, target):
corr = tissue_correlation(primary_trait_values, target[1], method)
return ({**acc[0], target[0]: corr[0]}, {**acc[0], target[1]: corr[1]})
return reduce(__corr__, target_traits_dict.items(), ({}, {}))
def correlations_of_all_tissue_traits(
primary_trait_symbol_value_dict: dict, symbol_value_dict: dict,
method: str) -> Tuple[dict, dict]:
"""
Computes and returns the correlation of all tissue traits.
This is a migration of the
`web.webqtl.correlation.correlationFunction.calculateCorrOfAllTissueTrait`
function in GeneNetwork1.
"""
primary_trait_values = tuple(primary_trait_symbol_value_dict.values())[0]
return batch_computed_tissue_correlation(
primary_trait_values, symbol_value_dict, method)
def good_dataset_samples_indexes(
samples: Tuple[str, ...],
samples_from_file: Tuple[str, ...]) -> Tuple[int, ...]:
"""
Return the indexes of the items in `samples_from_files` that are also found
in `samples`.
This is a partial migration of the
`web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
function in GeneNetwork1.
"""
return tuple(sorted(
samples_from_file.index(good) for good in
set(samples).intersection(set(samples_from_file))))
def partial_correlations_fast(# pylint: disable=[R0913, R0914]
samples, primary_vals, control_vals, database_filename,
fetched_correlations, method: str, correlation_type: str) -> Tuple[
int, Tuple[float, ...]]:
"""
Computes partial correlation coefficients using data from a CSV file.
This is a partial migration of the
`web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
function in GeneNetwork1.
"""
assert method in ("spearman", "pearson")
with open(database_filename, "r") as dataset_file:
dataset = tuple(dataset_file.readlines())
good_dataset_samples = good_dataset_samples_indexes(
samples, parse_csv_line(dataset[0])[1:])
def __process_trait_names_and_values__(acc, line):
trait_line = parse_csv_line(line)
trait_name = trait_line[0]
trait_data = trait_line[1:]
if trait_name in fetched_correlations.keys():
return (
acc[0] + (trait_name,),
acc[1] + tuple(
trait_data[i] if i in good_dataset_samples else None
for i in range(len(trait_data))))
return acc
processed_trait_names_values: tuple = reduce(
__process_trait_names_and_values__, dataset[1:], (tuple(), tuple()))
all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
all_correlations = compute_partial(
primary_vals, control_vals, all_target_trait_names,
all_target_trait_values, method)
## Line 772 to 779 in GN1 are the cause of the weird complexity in the
## return below. Once the surrounding code is successfully migrated and
## reworked, this complexity might go away, by getting rid of the
## `correlation_type` parameter
return len(all_correlations), tuple(
corr + (
(fetched_correlations[corr[0]],) # type: ignore[index]
if correlation_type == "literature"
else fetched_correlations[corr[0]][0:2]) # type: ignore[index]
for idx, corr in enumerate(all_correlations))
def build_data_frame(
xdata: Tuple[float, ...], ydata: Tuple[float, ...],
zdata: Union[
Tuple[float, ...],
Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
"""
Build a pandas DataFrame object from xdata, ydata and zdata
"""
x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
if isinstance(zdata[0], float):
return x_y_df.join(pandas.DataFrame({"z": zdata}))
interm_df = x_y_df.join(pandas.DataFrame(
{"z{}".format(i): val for i, val in enumerate(zdata)}))
if interm_df.shape[1] == 3:
return interm_df.rename(columns={"z0": "z"})
return interm_df
def compute_partial(
primary_vals, control_vals, target_vals, target_names,
method: str) -> Tuple[
Union[
Tuple[str, int, float, float, float, float], None],
...]:
"""
Compute the partial correlations.
This is a re-implementation of the
`web.webqtl.correlation.correlationFunction.determinePartialsByR` function
in GeneNetwork1.
This implementation reworks the child function `compute_partial` which will
then be used in the place of `determinPartialsByR`.
TODO: moving forward, we might need to use the multiprocessing library to
speed up the computations, in case they are found to be slow.
"""
# replace the R code with `pingouin.partial_corr`
def __compute_trait_info__(target):
targ_vals = target[0]
targ_name = target[1]
primary = [
prim for targ, prim in zip(targ_vals, primary_vals)
if targ is not None]
if len(primary) < 3:
return None
def __remove_controls_for_target_nones(cont_targ):
return tuple(cont for cont, targ in cont_targ if targ is not None)
conts_targs = tuple(tuple(
zip(control, targ_vals)) for control in control_vals)
datafrm = build_data_frame(
primary,
[targ for targ in targ_vals if targ is not None],
[__remove_controls_for_target_nones(cont_targ)
for cont_targ in conts_targs])
covariates = "z" if datafrm.shape[1] == 3 else [
col for col in datafrm.columns if col not in ("x", "y")]
ppc = pingouin.partial_corr(
data=datafrm, x="x", y="y", covar=covariates, method=(
"pearson" if "pearson" in method.lower() else "spearman"))
pc_coeff = ppc["r"][0]
zero_order_corr = pingouin.corr(
datafrm["x"], datafrm["y"], method=(
"pearson" if "pearson" in method.lower() else "spearman"))
if math.isnan(pc_coeff):
return (
targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
zero_order_corr["p-val"][0])
return (
targ_name, len(primary), pc_coeff,
(ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
zero_order_corr["r"][0], zero_order_corr["p-val"][0])
return tuple(
result for result in (
__compute_trait_info__(target)
for target in zip(target_vals, target_names))
if result is not None)
def partial_correlations_normal(# pylint: disable=R0913
primary_vals, control_vals, input_trait_gene_id, trait_database,
data_start_pos: int, db_type: str, method: str) -> Tuple[
int, Tuple[Union[
Tuple[str, int, float, float, float, float], None],
...]]:#Tuple[float, ...]
"""
Computes the correlation coefficients.
This is a migration of the
`web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsNormal`
function in GeneNetwork1.
"""
def __add_lit_and_tiss_corr__(item):
if method.lower() == "sgo literature correlation":
# if method is 'SGO Literature Correlation', `compute_partial`
# would give us LitCorr in the [1] position
return tuple(item) + trait_database[1]
if method.lower() in (
"tissue correlation, pearson's r",
"tissue correlation, spearman's rho"):
# if method is 'Tissue Correlation, *', `compute_partial` would give
# us Tissue Corr in the [1] position and Tissue Corr P Value in the
# [2] position
return tuple(item) + (trait_database[1], trait_database[2])
return item
target_trait_names, target_trait_vals = reduce(# type: ignore[var-annotated]
lambda acc, item: (acc[0]+(item[0],), acc[1]+(item[data_start_pos:],)),
trait_database, (tuple(), tuple()))
all_correlations = compute_partial(
primary_vals, control_vals, target_trait_vals, target_trait_names,
method)
if (input_trait_gene_id and db_type == "ProbeSet" and method.lower() in (
"sgo literature correlation", "tissue correlation, pearson's r",
"tissue correlation, spearman's rho")):
return (
len(trait_database),
tuple(
__add_lit_and_tiss_corr__(item)
for idx, item in enumerate(all_correlations)))
return len(trait_database), all_correlations
def partial_corrs(# pylint: disable=[R0913]
conn, samples, primary_vals, control_vals, return_number, species,
input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
method, dataset, database_filename):
"""
Compute the partial correlations, selecting the fast or normal method
depending on the existence of the database text file.
This is a partial migration of the
`web.webqtl.correlation.PartialCorrDBPage.__init__` function in
GeneNetwork1.
"""
if database_filename:
return partial_correlations_fast(
samples, primary_vals, control_vals, database_filename,
(
fetch_literature_correlations(
species, input_trait_geneid, dataset, return_number, conn)
if "literature" in method.lower() else
fetch_tissue_correlations(
dataset, input_trait_symbol, tissue_probeset_freeze_id,
method, return_number, conn)),
method,
("literature" if method.lower() == "sgo literature correlation"
else ("tissue" if "tissue" in method.lower() else "genetic")))
trait_database, data_start_pos = fetch_all_database_data(
conn, species, input_trait_geneid, input_trait_symbol, samples, dataset,
method, return_number, tissue_probeset_freeze_id)
return partial_correlations_normal(
primary_vals, control_vals, input_trait_geneid, trait_database,
data_start_pos, dataset, method)
def literature_correlation_by_list(
conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict, ...]:
"""
This is a migration of the
`web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
function in GeneNetwork1.
"""
if any((lambda t: (
bool(t.get("tissue_corr")) and
bool(t.get("tissue_p_value"))))(trait)
for trait in trait_list):
temporary_table_name = f"LITERATURE{random_string(8)}"
query1 = (
f"CREATE TEMPORARY TABLE {temporary_table_name} "
"(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
"value DOUBLE)")
query2 = (
f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
"SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
"WHERE GeneId1=%(geneid)s")
query3 = (
"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
"SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
"WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
def __set_mouse_geneid__(trait):
if trait.get("geneid"):
return {
**trait,
"mouse_geneid": translate_to_mouse_gene_id(
species, trait.get("geneid"), conn)
}
return {**trait, "mouse_geneid": 0}
def __retrieve_lcorr__(cursor, geneids):
cursor.execute(
f"SELECT GeneId2, value FROM {temporary_table_name} "
"WHERE GeneId2 IN %(geneids)s",
geneids=geneids)
return dict(cursor.fetchall())
with conn.cursor() as cursor:
cursor.execute(query1)
cursor.execute(query2)
cursor.execute(query3)
traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
lcorrs = __retrieve_lcorr__(
cursor, (
trait["mouse_geneid"] for trait in traits
if (trait["mouse_geneid"] != 0 and
trait["mouse_geneid"].find(";") < 0)))
return tuple(
{**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)}
for trait in traits)
return trait_list
return trait_list
def tissue_correlation_by_list(
conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int,
method: str, trait_list: Tuple[dict]) -> Tuple[dict, ...]:
"""
This is a migration of the
`web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
function in GeneNetwork1.
"""
def __add_tissue_corr__(trait, primary_trait_values, trait_values):
result = pingouin.corr(
primary_trait_values, trait_values,
method=("spearman" if "spearman" in method.lower() else "pearson"))
return {
**trait,
"tissue_corr": result["r"],
"tissue_p_value": result["p-val"]
}
if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list):
prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
(primary_trait_symbol,), tissue_probeset_freeze_id, conn)
if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
primary_trait_value = prim_trait_symbol_value_dict[
primary_trait_symbol.lower()]
gene_symbol_list = tuple(
trait["symbol"] for trait in trait_list if "symbol" in trait.keys())
symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
gene_symbol_list, tissue_probeset_freeze_id, conn)
return tuple(
__add_tissue_corr__(
trait, primary_trait_value,
symbol_value_dict[trait["symbol"].lower()])
for trait in trait_list
if ("symbol" in trait and
bool(trait["symbol"]) and
trait["symbol"].lower() in symbol_value_dict))
return tuple({
**trait,
"tissue_corr": None,
"tissue_p_value": None
} for trait in trait_list)
return trait_list
def trait_for_output(trait):
"""
Process a trait for output.
Removes a lot of extraneous data from the trait, that is not needed for
the display of partial correlation results.
This function also removes all key-value pairs, for which the value is
`None`, because it is a waste of network resources to transmit the key-value
pair just to indicate it does not exist.
"""
def __nan_to_none__(val):
if val is None:
return None
if math.isnan(val) or numpy.isnan(val):
return None
return val
trait = {
"trait_type": trait["db"]["dataset_type"],
"dataset_name": trait["db"]["dataset_name"],
"dataset_type": trait["db"]["dataset_type"],
"group": trait["db"]["group"],
"trait_fullname": trait["trait_fullname"],
"trait_name": trait["trait_name"],
"symbol": trait.get("symbol"),
"description": trait.get("description"),
"pre_publication_description": trait.get("Pre_publication_description"),
"post_publication_description": trait.get(
"Post_publication_description"),
"original_description": trait.get("Original_description"),
"authors": trait.get("Authors"),
"year": trait.get("Year"),
"probe_target_description": trait.get("Probe_target_description"),
"chr": trait.get("chr"),
"mb": trait.get("mb"),
"geneid": trait.get("geneid"),
"homologeneid": trait.get("homologeneid"),
"noverlap": trait.get("noverlap"),
"partial_corr": __nan_to_none__(trait.get("partial_corr")),
"partial_corr_p_value": __nan_to_none__(
trait.get("partial_corr_p_value")),
"corr": __nan_to_none__(trait.get("corr")),
"corr_p_value": __nan_to_none__(trait.get("corr_p_value")),
"rank_order": __nan_to_none__(trait.get("rank_order")),
"delta": (
None if trait.get("partial_corr") is None
else (trait.get("partial_corr") - trait.get("corr"))),
"l_corr": __nan_to_none__(trait.get("l_corr")),
"tissue_corr": __nan_to_none__(trait.get("tissue_corr")),
"tissue_p_value": __nan_to_none__(trait.get("tissue_p_value"))
}
return {key: val for key, val in trait.items() if val is not None}
def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
conn: Any, primary_trait_name: str,
control_trait_names: Tuple[str, ...], method: str,
criteria: int, target_db_name: str) -> dict:
"""
This is the 'ochestration' function for the partial-correlation feature.
This function will dispatch the functions doing data fetches from the
database (and various other places) and feed that data to the functions
doing the conversions and computations. It will then return the results of
all of that work.
This function is doing way too much. Look into splitting out the
functionality into smaller functions that do fewer things.
"""
threshold = 0
corr_min_informative = 4
all_traits = traits_info(
conn, threshold, (primary_trait_name,) + control_trait_names)
all_traits_data = traits_data(conn, all_traits)
primary_trait = tuple(
trait for trait in all_traits
if trait["trait_fullname"] == primary_trait_name)[0]
group = primary_trait["db"]["group"]
primary_trait_data = all_traits_data[primary_trait["trait_name"]]
primary_samples, primary_values, _primary_variances = export_informative(
primary_trait_data)
cntrl_traits = tuple(
trait for trait in all_traits
if trait["trait_fullname"] != primary_trait_name)
cntrl_traits_data = tuple(
data for trait_name, data in all_traits_data.items()
if trait_name != primary_trait["trait_name"])
species = species_name(conn, group)
(cntrl_samples,
cntrl_values,
_cntrl_variances,
_cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
common_primary_control_samples = primary_samples
fixed_primary_vals = primary_values
fixed_control_vals = cntrl_values
if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
(common_primary_control_samples,
fixed_primary_vals,
fixed_control_vals,
_primary_variances,
_cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
if len(common_primary_control_samples) < corr_min_informative:
return {
"status": "error",
"message": (
f"Fewer than {corr_min_informative} samples data entered for "
f"{group} dataset. No calculation of correlation has been "
"attempted."),
"error_type": "Inadequate Samples"}
identical_traits_names = find_identical_traits(
primary_trait_name, primary_values, control_trait_names, cntrl_values)
if len(identical_traits_names) > 0:
return {
"status": "error",
"message": (
f"{identical_traits_names[0]} and {identical_traits_names[1]} "
"have the same values for the {len(fixed_primary_vals)} "
"samples that will be used to compute the partial correlation "
"(common for all primary and control traits). In such cases, "
"partial correlation cannot be computed. Please re-select your "
"traits."),
"error_type": "Identical Traits"}
input_trait_geneid = primary_trait.get("geneid", 0)
input_trait_symbol = primary_trait.get("symbol", "")
input_trait_mouse_geneid = translate_to_mouse_gene_id(
species, input_trait_geneid, conn)
tissue_probeset_freeze_id = 1
db_type = primary_trait["db"]["dataset_type"]
if db_type == "ProbeSet" and method.lower() in (
"sgo literature correlation",
"tissue correlation, pearson's r",
"tissue correlation, spearman's rho"):
return {
"status": "error",
"message": (
"Wrong correlation type: It is not possible to compute the "
f"{method} between your trait and data in the {target_db_name} "
"database. Please try again after selecting another type of "
"correlation."),
"error_type": "Correlation Type"}
if (method.lower() == "sgo literature correlation" and (
bool(input_trait_geneid) is False or
check_for_literature_info(conn, input_trait_mouse_geneid))):
return {
"status": "error",
"message": (
"No Literature Information: This gene does not have any "
"associated Literature Information."),
"error_type": "Literature Correlation"}
if (
method.lower() in (
"tissue correlation, pearson's r",
"tissue correlation, spearman's rho")
and bool(input_trait_symbol) is False):
return {
"status": "error",
"message": (
"No Tissue Correlation Information: This gene does not have "
"any associated Tissue Correlation Information."),
"error_type": "Tissue Correlation"}
if (
method.lower() in (
"tissue correlation, pearson's r",
"tissue correlation, spearman's rho")
and check_symbol_for_tissue_correlation(
conn, tissue_probeset_freeze_id, input_trait_symbol)):
return {
"status": "error",
"message": (
"No Tissue Correlation Information: This gene does not have "
"any associated Tissue Correlation Information."),
"error_type": "Tissue Correlation"}
target_dataset = retrieve_trait_dataset(
("Temp" if "Temp" in target_db_name else
("Publish" if "Publish" in target_db_name else
"Geno" if "Geno" in target_db_name else "ProbeSet")),
{"db": {"dataset_name": target_db_name}, "trait_name": "_"},
threshold,
conn)
database_filename = get_filename(conn, target_db_name, TEXTDIR)
_total_traits, all_correlations = partial_corrs(
conn, common_primary_control_samples, fixed_primary_vals,
fixed_control_vals, len(fixed_primary_vals), species,
input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
method, {**target_dataset, "dataset_type": target_dataset["type"]}, database_filename)
def __make_sorter__(method):
def __sort_6__(row):
return row[6]
def __sort_3__(row):
return row[3]
if "literature" in method.lower():
return __sort_6__
if "tissue" in method.lower():
return __sort_6__
return __sort_3__
add_lit_corr_and_tiss_corr = compose(
partial(literature_correlation_by_list, conn, species),
partial(
tissue_correlation_by_list, conn, input_trait_symbol,
tissue_probeset_freeze_id, method))
selected_results = sorted(
all_correlations,
key=__make_sorter__(method))[:min(criteria, len(all_correlations))]
traits_list_corr_info = {
f"{target_dataset['dataset_name']}::{item[0]}": {
"noverlap": item[1],
"partial_corr": item[2],
"partial_corr_p_value": item[3],
"corr": item[4],
"corr_p_value": item[5],
"rank_order": (1 if "spearman" in method.lower() else 0),
**({
"tissue_corr": item[6],
"tissue_p_value": item[7]}
if len(item) == 8 else {}),
**({"l_corr": item[6]}
if len(item) == 7 else {})
} for item in selected_results}
trait_list = add_lit_corr_and_tiss_corr(tuple(
{**trait, **traits_list_corr_info.get(trait["trait_fullname"], {})}
for trait in traits_info(
conn, threshold,
tuple(
f"{target_dataset['dataset_name']}::{item[0]}"
for item in selected_results))))
return {
"status": "success",
"results": {
"primary_trait": trait_for_output(primary_trait),
"control_traits": tuple(
trait_for_output(trait) for trait in cntrl_traits),
"correlations": tuple(
trait_for_output(trait) for trait in trait_list),
"dataset_type": target_dataset["type"],
"method": "spearman" if "spearman" in method.lower() else "pearson"
}}
|