1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
"""module contains code for correlations"""
import multiprocessing
from typing import List
from typing import Tuple
from typing import Optional
from typing import Callable
import scipy.stats
def map_shared_keys_to_values(target_sample_keys: List,
target_sample_vals: dict) -> List:
"""Function to construct target dataset data items given common shared keys
and trait sample-list values for example given keys
>>>>>>>>>> ["BXD1", "BXD2", "BXD5", "BXD6", "BXD8", "BXD9"] and value
object as "HCMA:_AT": [4.1, 5.6, 3.2, 1.1, 4.4, 2.2],TXD_AT": [6.2, 5.7,
3.6, 1.5, 4.2, 2.3]} return results should be a list of dicts mapping the
shared keys to the trait values
"""
target_dataset_data = []
for trait_id, sample_values in target_sample_vals.items():
target_trait_dict = dict(zip(target_sample_keys, sample_values))
target_trait = {
"trait_id": trait_id,
"trait_sample_data": target_trait_dict
}
target_dataset_data.append(target_trait)
return target_dataset_data
def normalize_values(a_values: List,
b_values: List) -> Tuple[List[float], List[float], int]:
"""Trim two lists of values to contain only the values they both share Given
two lists of sample values, trim each list so that it contains only the
samples that contain a value in both lists. Also returns the number of
such samples.
>>> normalize_values([2.3, None, None, 3.2, 4.1, 5],
[3.4, 7.2, 1.3, None, 6.2, 4.1])
([2.3, 4.1, 5], [3.4, 6.2, 4.1], 3)
"""
a_new = []
b_new = []
for a_val, b_val in zip(a_values, b_values):
if (a_val and b_val is not None):
a_new.append(a_val)
b_new.append(b_val)
return a_new, b_new, len(a_new)
def compute_corr_coeff_p_value(primary_values: List, target_values: List,
corr_method: str) -> Tuple[float, float]:
"""Given array like inputs calculate the primary and target_value methods ->
pearson,spearman and biweight mid correlation return value is rho and p_value
"""
corr_mapping = {
"bicor": do_bicor,
"pearson": scipy.stats.pearsonr,
"spearman": scipy.stats.spearmanr
}
use_corr_method = corr_mapping.get(corr_method, "spearman")
corr_coeffient, p_val = use_corr_method(primary_values, target_values)
return (corr_coeffient, p_val)
def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
target_samples_vals) -> Optional[
Tuple[str, float, float, int]]:
"""Given a primary trait values and target trait values calculate the
correlation coeff and p value
"""
(sanitized_traits_vals, sanitized_target_vals,
num_overlap) = normalize_values(trait_vals, target_samples_vals)
if num_overlap > 5:
(corr_coeffient, p_value) =\
compute_corr_coeff_p_value(primary_values=sanitized_traits_vals,
target_values=sanitized_target_vals,
corr_method=corr_method)
# xtodo check if corr_coefficient is None
# should use numpy.isNan scipy.isNan is deprecated
if corr_coeffient is not None:
return (trait_name, corr_coeffient, p_value, num_overlap)
return None
def do_bicor(x_val, y_val) -> Tuple[float, float]:
"""Not implemented method for doing biweight mid correlation use astropy stats
package :not packaged in guix
"""
x_val, y_val = 0, 0
return (x_val, y_val)
def filter_shared_sample_keys(this_samplelist,
target_samplelist) -> Tuple[List, List]:
"""Given primary and target sample-list for two base and target trait select
filter the values using the shared keys
"""
this_vals = []
target_vals = []
for key, value in target_samplelist.items():
if key in this_samplelist:
target_vals.append(value)
this_vals.append(this_samplelist[key])
return (this_vals, target_vals)
def compute_all_sample_correlation(this_trait,
target_dataset,
corr_method="pearson") -> List:
"""Given a trait data sample-list and target__datasets compute all sample
correlation
"""
# xtodo fix trait_name currently returning single one
# pylint: disable-msg=too-many-locals
this_trait_samples = this_trait["trait_sample_data"]
corr_results = []
processed_values = []
for target_trait in target_dataset:
trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
processed_values.append((trait_name, corr_method, *filter_shared_sample_keys(
this_trait_samples, target_trait_data)))
with multiprocessing.Pool(4) as pool:
results = pool.starmap(compute_sample_r_correlation, processed_values)
for sample_correlation in results:
if sample_correlation is not None:
(trait_name, corr_coeffient, p_value,
num_overlap) = sample_correlation
corr_result = {
"corr_coeffient": corr_coeffient,
"p_value": p_value,
"num_overlap": num_overlap
}
corr_results.append({trait_name: corr_result})
return sorted(
corr_results,
key=lambda trait_name: -abs(list(trait_name.values())[0]["corr_coeffient"]))
def benchmark_compute_all_sample(this_trait,
target_dataset,
corr_method="pearson") -> List:
"""Temp function to benchmark with compute_all_sample_r alternative to
compute_all_sample_r where we use multiprocessing
"""
this_trait_samples = this_trait["trait_sample_data"]
corr_results = []
for target_trait in target_dataset:
trait_name = target_trait.get("trait_id")
target_trait_data = target_trait["trait_sample_data"]
this_vals, target_vals = filter_shared_sample_keys(
this_trait_samples, target_trait_data)
sample_correlation = compute_sample_r_correlation(
trait_name=trait_name,
corr_method=corr_method,
trait_vals=this_vals,
target_samples_vals=target_vals)
if sample_correlation is not None:
(trait_name, corr_coeffient,
p_value, num_overlap) = sample_correlation
else:
continue
corr_result = {
"corr_coeffient": corr_coeffient,
"p_value": p_value,
"num_overlap": num_overlap
}
corr_results.append({trait_name: corr_result})
return corr_results
def tissue_lit_corr_for_probe_type(corr_type: str, top_corr_results):
"""Function that does either lit_corr_for_trait_list or tissue_corr _for_trait
list depending on whether both dataset and target_dataset are both set to
probet
"""
corr_results = {"lit": 1}
if corr_type not in ("lit", "literature"):
corr_results["top_corr_results"] = top_corr_results
# run lit_correlation for the given top_corr_results
if corr_type == "tissue":
# run lit correlation the given top corr results
pass
if corr_type == "sample":
pass
# run sample r correlation for the given top results
return corr_results
def tissue_correlation_for_trait_list(
primary_tissue_vals: List,
target_tissues_values: List,
corr_method: str,
trait_id: str,
compute_corr_p_value: Callable = compute_corr_coeff_p_value) -> dict:
"""Given a primary tissue values for a trait and the target tissues values
compute the correlation_cooeff and p value the input required are arrays
output -> List containing Dicts with corr_coefficient value,P_value and
also the tissue numbers is len(primary) == len(target)
"""
# ax :todo assertion that length one one target tissue ==primary_tissue
(tissue_corr_coeffient,
p_value) = compute_corr_p_value(primary_values=primary_tissue_vals,
target_values=target_tissues_values,
corr_method=corr_method)
tiss_corr_result = {trait_id: {
"tissue_corr": tissue_corr_coeffient,
"tissue_number": len(primary_tissue_vals),
"p_value": p_value}}
return tiss_corr_result
def fetch_lit_correlation_data(
conn,
input_mouse_gene_id: Optional[str],
gene_id: str,
mouse_gene_id: Optional[str] = None) -> Tuple[str, float]:
"""Given input trait mouse gene id and mouse gene id fetch the lit
corr_data
"""
if mouse_gene_id is not None and ";" not in mouse_gene_id:
query = """
SELECT VALUE
FROM LCorrRamin3
WHERE GeneId1='%s' and
GeneId2='%s'
"""
query_values = (str(mouse_gene_id), str(input_mouse_gene_id))
cursor = conn.cursor()
cursor.execute(query_formatter(query,
*query_values))
results = cursor.fetchone()
lit_corr_results = None
if results is not None:
lit_corr_results = results
else:
cursor = conn.cursor()
cursor.execute(query_formatter(query,
*tuple(reversed(query_values))))
lit_corr_results = cursor.fetchone()
lit_results = (gene_id, lit_corr_results.val)\
if lit_corr_results else (gene_id, 0)
return lit_results
return (gene_id, 0)
def lit_correlation_for_trait_list(
conn,
target_trait_lists: List,
species: Optional[str] = None,
trait_gene_id: Optional[str] = None) -> List:
"""given species,base trait gene id fetch the lit corr results from the db\
output is float for lit corr results """
fetched_lit_corr_results = []
this_trait_mouse_gene_id = map_to_mouse_gene_id(conn=conn,
species=species,
gene_id=trait_gene_id)
for (trait_name, target_trait_gene_id) in target_trait_lists:
corr_results = {}
if target_trait_gene_id:
target_mouse_gene_id = map_to_mouse_gene_id(
conn=conn,
species=species,
gene_id=target_trait_gene_id)
fetched_corr_data = fetch_lit_correlation_data(
conn=conn,
input_mouse_gene_id=this_trait_mouse_gene_id,
gene_id=target_trait_gene_id,
mouse_gene_id=target_mouse_gene_id)
dict_results = dict(zip(("gene_id", "lit_corr"),
fetched_corr_data))
corr_results[trait_name] = dict_results
fetched_lit_corr_results.append(corr_results)
return fetched_lit_corr_results
def query_formatter(query_string: str, *query_values):
"""Formatter query string given the unformatted query string and the
respectibe values.Assumes number of placeholders is equal to the number of
query values
"""
# xtodo escape sql queries
return query_string % (query_values)
def map_to_mouse_gene_id(conn, species: Optional[str],
gene_id: Optional[str]) -> Optional[str]:
"""Given a species which is not mouse map the gene_id\
to respective mouse gene id"""
# AK:xtodo move the code for checking nullity out of thing functions bug
# while method for string
if None in (species, gene_id):
return None
if species == "mouse":
return gene_id
cursor = conn.cursor()
query = """SELECT mouse
FROM GeneIDXRef
WHERE '%s' = '%s'"""
query_values = (species, gene_id)
cursor.execute(query_formatter(query,
*query_values))
results = cursor.fetchone()
mouse_gene_id = results.mouse if results is not None else None
return mouse_gene_id
def compute_all_lit_correlation(conn, trait_lists: List,
species: str, gene_id):
"""Function that acts as an abstraction for lit_correlation_for_trait_list
"""
lit_results = lit_correlation_for_trait_list(
conn=conn,
target_trait_lists=trait_lists,
species=species,
trait_gene_id=gene_id)
sorted_lit_results = sorted(
lit_results,
key=lambda trait_name: -abs(list(trait_name.values())[0]["lit_corr"]))
return sorted_lit_results
def compute_all_tissue_correlation(primary_tissue_dict: dict,
target_tissues_data: dict,
corr_method: str):
"""Function acts as an abstraction for tissue_correlation_for_trait_list
required input are target tissue object and primary tissue trait target
tissues data contains the trait_symbol_dict and symbol_tissue_vals
"""
tissues_results = []
primary_tissue_vals = primary_tissue_dict["tissue_values"]
traits_symbol_dict = target_tissues_data["trait_symbol_dict"]
symbol_tissue_vals_dict = target_tissues_data["symbol_tissue_vals_dict"]
target_tissues_list = process_trait_symbol_dict(
traits_symbol_dict, symbol_tissue_vals_dict)
for target_tissue_obj in target_tissues_list:
trait_id = target_tissue_obj.get("trait_id")
target_tissue_vals = target_tissue_obj.get("tissue_values")
tissue_result = tissue_correlation_for_trait_list(
primary_tissue_vals=primary_tissue_vals,
target_tissues_values=target_tissue_vals,
trait_id=trait_id,
corr_method=corr_method)
tissue_result_dict = {trait_id: tissue_result}
tissues_results.append(tissue_result_dict)
return sorted(
tissues_results,
key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))
def process_trait_symbol_dict(trait_symbol_dict, symbol_tissue_vals_dict) -> List:
"""Method for processing trait symbol dict given the symbol tissue values
"""
traits_tissue_vals = []
for (trait, symbol) in trait_symbol_dict.items():
if symbol is not None:
target_symbol = symbol.lower()
if target_symbol in symbol_tissue_vals_dict:
trait_tissue_val = symbol_tissue_vals_dict[target_symbol]
target_tissue_dict = {"trait_id": trait,
"symbol": target_symbol,
"tissue_values": trait_tissue_val}
traits_tissue_vals.append(target_tissue_dict)
return traits_tissue_vals
def compute_tissue_correlation(primary_tissue_dict: dict,
target_tissues_data: dict,
corr_method: str):
"""Experimental function that uses multiprocessing for computing tissue
correlation
"""
tissues_results = []
primary_tissue_vals = primary_tissue_dict["tissue_values"]
traits_symbol_dict = target_tissues_data["trait_symbol_dict"]
symbol_tissue_vals_dict = target_tissues_data["symbol_tissue_vals_dict"]
target_tissues_list = process_trait_symbol_dict(
traits_symbol_dict, symbol_tissue_vals_dict)
processed_values = []
for target_tissue_obj in target_tissues_list:
trait_id = target_tissue_obj.get("trait_id")
target_tissue_vals = target_tissue_obj.get("tissue_values")
processed_values.append(
(primary_tissue_vals, target_tissue_vals, corr_method, trait_id))
with multiprocessing.Pool(4) as pool:
results = pool.starmap(
tissue_correlation_for_trait_list, processed_values)
for result in results:
tissues_results.append(result)
return sorted(
tissues_results,
key=lambda trait_name: -abs(list(trait_name.values())[0]["tissue_corr"]))
|