aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/partial_correlations.py95
1 files changed, 69 insertions, 26 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 07dc16d..4f45159 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -5,10 +5,14 @@ It is an attempt to migrate over the partial correlations feature from
GeneNetwork1.
"""
+import math
from functools import reduce
-from typing import Any, Tuple, Sequence
+from typing import Any, Tuple, Union, Sequence
from scipy.stats import pearsonr, spearmanr
+import pandas
+import pingouin
+
from gn3.settings import TEXTDIR
from gn3.data_helpers import parse_csv_line
@@ -152,7 +156,7 @@ def tissue_correlation(
"Method must be one of: {}".format(",".join(method_fns.keys())))
corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
- return (round(corr, 10), round(pvalue, 10))
+ return (corr, pvalue)
def batch_computed_tissue_correlation(
primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
@@ -245,7 +249,7 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
- all_correlations = determine_partials(
+ all_correlations = compute_partial(
primary_vals, control_vals, all_target_trait_names,
all_target_trait_values, method)
## Line 772 to 779 in GN1 are the cause of the weird complexity in the
@@ -258,32 +262,71 @@ def compute_partial_correlations_fast(# pylint: disable=[R0913, R0914]
else fetched_correlations[corr[0]][0:2])
for idx, corr in enumerate(all_correlations))
-def partial_correlation_matrix(
+def build_data_frame(
xdata: Tuple[float, ...], ydata: Tuple[float, ...],
- zdata: Tuple[float, ...], method: str = "pearsons",
- omit_nones: bool = True) -> float:
+ zdata: Union[
+ Tuple[float, ...],
+ Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
"""
- Computes the partial correlation coefficient using the
- 'variance-covariance matrix' method
-
- This is a partial migration of the
- `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
- GeneNetwork1, specifically the `pcor.mat` function written in the R
- programming language.
+ Build a pandas DataFrame object from xdata, ydata and zdata
"""
- return 0
-
-def partial_correlation_recursive(
- xdata: Tuple[float, ...], ydata: Tuple[float, ...],
- zdata: Tuple[float, ...], method: str = "pearsons",
- omit_nones: bool = True) -> float:
+ x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
+ if isinstance(zdata[0], float):
+ return x_y_df.join(pandas.DataFrame({"z": zdata}))
+ interm_df = x_y_df.join(pandas.DataFrame(
+ {"z{}".format(i): val for i, val in enumerate(zdata)}))
+ if interm_df.shape[1] == 3:
+ return interm_df.rename(columns={"z0": "z"})
+ return interm_df
+
+def compute_partial(
+ primary_vals, control_vals, target_vals, target_names,
+ method: str) -> Tuple[
+ Union[
+ Tuple[str, int, float, float, float, float], None],
+ ...]:
"""
- Computes the partial correlation coefficient using the 'recursive formula'
- method
+ Compute the partial correlations.
- This is a partial migration of the
- `web.webqtl.correlation.correlationFunction.determinPartialsByR` function in
- GeneNetwork1, specifically the `pcor.rec` function written in the R
- programming language.
+ This is a re-implementation of the
+ `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
+ in GeneNetwork1.
+
+ This implementation reworks the child function `compute_partial` which will
+ then be used in the place of `determinPartialsByR`.
+
+ TODO: moving forward, we might need to use the multiprocessing library to
+ speed up the computations, in case they are found to be slow.
"""
- return 0
+ # replace the R code with `pingouin.partial_corr`
+ def __compute_trait_info__(target):
+ primary = [
+ prim for targ, prim in zip(target, primary_vals)
+ if targ is not None]
+ datafrm = build_data_frame(
+ primary,
+ [targ for targ in target if targ is not None],
+ [cont for i, cont in enumerate(control_vals)
+ if target[i] is not None])
+ covariates = "z" if datafrm.shape[1] == 3 else [
+ col for col in datafrm.columns if col not in ("x", "y")]
+ ppc = pingouin.partial_corr(
+ data=datafrm, x="x", y="y", covar=covariates, method=method)
+ pc_coeff = ppc["r"]
+
+ zero_order_corr = pingouin.corr(
+ datafrm["x"], datafrm["y"], method=method)
+
+ if math.isnan(pc_coeff):
+ return (
+ target[1], len(primary), pc_coeff, 1, zero_order_corr["r"],
+ zero_order_corr["p-val"])
+ return (
+ target[1], len(primary), pc_coeff,
+ (ppc["p-val"] if not math.isnan(ppc["p-val"]) else (
+ 0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
+ zero_order_corr["r"], zero_order_corr["p-val"])
+
+ return tuple(
+ __compute_trait_info__(target)
+ for target in zip(target_vals, target_names))