aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/partial_correlations.py40
1 files changed, 25 insertions, 15 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 2720316..c12b4ec 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -266,21 +266,31 @@ def compute_trait_info(primary_vals, control_vals, target, method):
"""
targ_vals = target[0]
targ_name = target[1]
- primary = [
- prim for targ, prim in zip(targ_vals, primary_vals)
- if targ is not None]
-
- if len(primary) < 3:
+ def __remove_nones__(acc, items):
+ prim, targ, *conts = items
+ if targ is None:
+ return acc
+ old_conts = acc["controls"]
+ return {
+ "primary": acc["primary"] + [prim],
+ "targets": acc["targets"] + [targ],
+ "controls": [
+ old_conts[idx] + [cont]
+ for idx, cont in enumerate(conts)
+ ]
+ }
+ processed = reduce(
+ __remove_nones__, zip(primary_vals, targ_vals, *control_vals),
+ {
+ "primary":[], "targets": [],
+ "controls": [[] for idx in range(0, len(control_vals))]
+ })
+
+ if len(processed["primary"]) < 4:
return None
- def __remove_controls_for_target_nones(cont_targ):
- return tuple(cont for cont, targ in cont_targ if targ is not None)
-
datafrm = build_data_frame(
- primary,
- [targ for targ in targ_vals if targ is not None],
- [__remove_controls_for_target_nones(tuple(zip(control, targ_vals)))
- for control in control_vals])
+ processed["primary"], processed["targets"], processed["controls"])
covariates = "z" if datafrm.shape[1] == 3 else [
col for col in datafrm.columns if col not in ("x", "y")]
ppc = pingouin.partial_corr(
@@ -294,10 +304,10 @@ def compute_trait_info(primary_vals, control_vals, target, method):
if math.isnan(pc_coeff):
return (
- targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
- zero_order_corr["p-val"][0])
+ targ_name, len(processed["primary"]), pc_coeff, 1,
+ zero_order_corr["r"][0], zero_order_corr["p-val"][0])
return (
- targ_name, len(primary), pc_coeff,
+ targ_name, len(processed["primary"]), pc_coeff,
(ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
zero_order_corr["r"][0], zero_order_corr["p-val"][0])