aboutsummaryrefslogtreecommitdiff
path: root/gn3
diff options
context:
space:
mode:
authorzsloan2022-03-22 15:41:45 -0500
committerGitHub2022-03-22 15:41:45 -0500
commitf4b02281cdf0a29d82caf8c06ce96f947e5cf623 (patch)
treea81c350a5a08b3b7cdf8375b728b48951791a14c /gn3
parent7b2901817a1aabd947483f87b5a2a2d33618de7e (diff)
parenta75634cc5637168165e601f09dc9ad820e6e443f (diff)
downloadgenenetwork3-f4b02281cdf0a29d82caf8c06ce96f947e5cf623.tar.gz
Merge pull request #29 from zsloan/feature/add_rqtl_pairscan
Feature/add rqtl pairscan
Diffstat (limited to 'gn3')
-rw-r--r--gn3/api/rqtl.py11
-rw-r--r--gn3/computations/rqtl.py188
2 files changed, 184 insertions, 15 deletions
diff --git a/gn3/api/rqtl.py b/gn3/api/rqtl.py
index b5627c5..70ebe12 100644
--- a/gn3/api/rqtl.py
+++ b/gn3/api/rqtl.py
@@ -6,7 +6,8 @@ from flask import current_app
from flask import jsonify
from flask import request
-from gn3.computations.rqtl import generate_rqtl_cmd, process_rqtl_output, process_perm_output
+from gn3.computations.rqtl import generate_rqtl_cmd, process_rqtl_mapping, \
+ process_rqtl_pairscan, process_perm_output
from gn3.computations.gemma import do_paths_exist
rqtl = Blueprint("rqtl", __name__)
@@ -25,7 +26,7 @@ run the rqtl_wrapper script and return the results as JSON
# Split kwargs by those with values and boolean ones that just convert to True/False
kwargs = ["covarstruct", "model", "method", "nperm", "scale", "control_marker"]
- boolean_kwargs = ["addcovar", "interval", "pstrata"]
+ boolean_kwargs = ["addcovar", "interval", "pstrata", "pairscan"]
all_kwargs = kwargs + boolean_kwargs
rqtl_kwargs = {"geno": genofile, "pheno": phenofile}
@@ -48,9 +49,11 @@ run the rqtl_wrapper script and return the results as JSON
"output", rqtl_cmd.get('output_file'))):
os.system(rqtl_cmd.get('rqtl_cmd'))
- rqtl_output['results'] = process_rqtl_output(rqtl_cmd.get('output_file'))
+ if "pairscan" in rqtl_bool_kwargs:
+ rqtl_output['results'] = process_rqtl_pairscan(rqtl_cmd.get('output_file'), genofile)
+ else:
+ rqtl_output['results'] = process_rqtl_mapping(rqtl_cmd.get('output_file'))
- rqtl_output['results'] = process_rqtl_output(rqtl_cmd.get('output_file'))
if int(rqtl_kwargs['nperm']) > 0:
rqtl_output['perm_results'], rqtl_output['suggestive'], rqtl_output['significant'] = \
process_perm_output(rqtl_cmd.get('output_file'))
diff --git a/gn3/computations/rqtl.py b/gn3/computations/rqtl.py
index b3539a9..65ee6de 100644
--- a/gn3/computations/rqtl.py
+++ b/gn3/computations/rqtl.py
@@ -1,6 +1,7 @@
"""Procedures related rqtl computations"""
import os
-from typing import Dict, List, Union
+from bisect import bisect
+from typing import Dict, List, Tuple, Union
import numpy as np
@@ -15,9 +16,7 @@ def generate_rqtl_cmd(rqtl_wrapper_cmd: str,
rqtl_wrapper_bool_kwargs: list) -> Dict:
"""Given the base rqtl_wrapper command and
dict of keyword arguments, return the full rqtl_wrapper command and an
-output filename generated from a hash of the genotype and phenotype files
-
- """
+output filename generated from a hash of the genotype and phenotype files"""
# Generate a hash from contents of the genotype and phenotype files
_hash = get_hash_of_files(
@@ -47,11 +46,9 @@ output filename generated from a hash of the genotype and phenotype files
}
-def process_rqtl_output(file_name: str) -> List:
+def process_rqtl_mapping(file_name: str) -> List:
"""Given an output file name, read in R/qtl results and return
- a List of marker objects
-
- """
+ a List of marker objects"""
marker_obs = []
# Later I should probably redo this using csv.read to avoid the
# awkwardness with removing quotes with [1:-1]
@@ -80,12 +77,181 @@ def process_rqtl_output(file_name: str) -> List:
return marker_obs
+def process_rqtl_pairscan(file_name: str, geno_file: str) -> List:
+ """Given an output file name, read in R/qtl pair-scan results and return
+a list of both the JSON needed for the d3panels figure and a list of results
+to be used when generating the results table (which will include marker names)"""
+ figure_data = pairscan_for_figure(file_name)
+ table_data = pairscan_for_table(file_name, geno_file)
-def process_perm_output(file_name: str):
- """Given base filename, read in R/qtl permutation output and calculate
- suggestive and significant thresholds
+ return [figure_data, table_data]
+
+def pairscan_for_figure(file_name: str) -> Dict:
+ """Given an output file name, read in R/qtl pair-scan results and return
+ the JSON needed for the d3panels figure"""
+ figure_data = {}
+
+ # Open the file with the actual results, written as a list of lists
+ with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
+ "output", file_name), "r") as the_file:
+ lod_results = []
+ for i, line in enumerate(the_file):
+ if i == 0: # Skip first line
+ continue
+ line_items = [item.rstrip('\n') for item in line.split(",")]
+ lod_results.append(line_items[1:]) # Append all but first item in line
+ figure_data['lod'] = lod_results
+
+ # Open the map file with the list of markers/pseudomarkers and their positions
+ with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
+ "output", "MAP_" + file_name), "r") as the_file:
+ chr_list = [] # type: List
+ pos_list = [] # type: List
+ for i, line in enumerate(the_file):
+ if i == 0: # Skip first line
+ continue
+ line_items = [item.rstrip('\n') for item in line.split(",")]
+ chr_list.append(line_items[1][1:-1])
+ pos_list.append(line_items[2])
+ figure_data['chr'] = chr_list
+ figure_data['pos'] = pos_list
+
+ return figure_data
+
+def get_marker_list(map_file: str) -> List:
+ """
+ Open the map file with the list of markers/pseudomarkers and create list of marker obs
+
+ PARAMETERS:
+ map_file: The map file output by R/qtl containing marker/pseudomarker positions
+ """
+
+ marker_list = []
+ with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
+ "output", map_file), "r") as map_fh:
+ for line in map_fh.readlines()[1:]:
+ line_items = [item.rstrip('\n') for item in line.split(",")]
+ this_marker = {
+ 'name': line_items[0],
+ 'chr': line_items[1][1:-1], # Strip quotes from beginning and end of chr string
+ 'pos': line_items[2]
+ }
+
+ marker_list.append(this_marker)
+
+ return marker_list
+
+def generate_table_rows(results_file: str, marker_list: List, original_markers: Dict) -> List:
+ """
+ Open the file with the actual R/qtl pair-scan results and write them as
+ they will be displayed in the results table
+ PARAMETERS:
+ results_file: The filename containing R/qtl pair-scan results
+ marker_list: List of marker/pseudomarker names/positions from results
+ original_markers: Dict of markers from the .geno file, for finding proximal/distal
+ markers to each pseudomarker
"""
+
+ table_data = []
+ with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
+ "output", results_file), "r") as the_file:
+ for i, line in enumerate(the_file.readlines()[1:]):
+ marker_1 = marker_list[i]
+ marker_1['proximal'], marker_1['distal'] = find_nearest_marker(marker_1['chr'],
+ marker_1['pos'],
+ original_markers)
+ line_items = [item.rstrip('\n') for item in line.split(",")]
+ for j, item in enumerate(line_items[1:]):
+ marker_2 = marker_list[j]
+ marker_2['proximal'], marker_2['distal'] = find_nearest_marker(marker_2['chr'],
+ marker_2['pos'],
+ original_markers)
+ try:
+ lod_score = f"{float(item):.3f}"
+ except ValueError:
+ lod_score = f"{item}"
+
+ table_data.append({
+ 'proximal1': marker_1['proximal'],
+ 'distal1': marker_1['distal'],
+ 'pos1': f"Chr {marker_1['chr']} @ {float(marker_1['pos']):.1f} cM",
+ 'lod': lod_score,
+ 'proximal2': marker_2['proximal'],
+ 'distal2': marker_2['distal'],
+ 'pos2': f"Chr {marker_2['chr']} @ {float(marker_2['pos']):.1f} cM"
+ })
+
+ return table_data
+
+def pairscan_for_table(file_name: str, geno_file: str) -> List:
+ """
+ Read in R/qtl pair-scan results and return as List representing
+ table row contents
+
+ PARAMETERS:
+ file_name: The filename containing R/qtl pair-scan results
+ geno_file: Filename of the genotype file (used to get marker positions)
+ """
+
+ # Open the map file with the list of markers/pseudomarkers and create list of marker obs
+ marker_list = get_marker_list("MAP_" + file_name)
+
+ # Get the list of original markers from the .geno file
+ original_markers = build_marker_pos_dict(geno_file)
+
+ # Open the file with the actual results and write the results as
+ # they will be displayed in the results table
+ table_data = generate_table_rows(file_name, marker_list, original_markers)
+
+ return sorted(table_data, key=lambda i: float(i['lod']), reverse=True)[:500]
+
+def build_marker_pos_dict(genotype_file: str) -> Dict:
+ """Gets list of markers and their positions from .geno file
+
+ Basically a pared-down version of parse_genotype_file for R/qtl pair-scan"""
+
+ with open(genotype_file, "r") as infile:
+ contents = infile.readlines()
+
+ # Get all lines after the metadata
+ lines = tuple(line for line in contents if
+ ((not line.strip().startswith("#")) and
+ (not line.strip().startswith("@")) and
+ (not line.strip() == "")))
+
+ header_items = lines[0].split("\t")
+ mb_exists = "Mb" in header_items
+ pos_column = header_items.index("Mb") if mb_exists else header_items.index("cM")
+
+ the_markers = {"1": {}} # type: Dict[str, Dict]
+ for line in lines[1:]: # The lines with markers
+ line_items = line.split("\t")
+ this_chr = line_items[0]
+ if this_chr not in the_markers:
+ the_markers[this_chr] = {}
+ the_markers[this_chr][str(float(line_items[pos_column]))] = line_items[1]
+
+ return the_markers
+
+def find_nearest_marker(the_chr: str, the_pos: str, marker_list: Dict) -> Tuple[str, str]:
+ """Given a chromosome and position of a pseudomarker (from R/qtl pair-scan results),
+ return the nearest real marker"""
+
+ pos_list = [float(pos) for pos in marker_list[the_chr]]
+
+ # Get the position of the pseudomarker in the list of markers for the chr
+ the_pos_index = bisect(pos_list, float(the_pos))
+
+ proximal_marker = marker_list[the_chr][str(pos_list[the_pos_index-1])]
+ distal_marker = marker_list[the_chr][str(pos_list[the_pos_index])]
+
+ return proximal_marker, distal_marker
+
+def process_perm_output(file_name: str) -> Tuple[List, float, float]:
+ """Given base filename, read in R/qtl permutation output and calculate
+ suggestive and significant thresholds"""
+
perm_results = []
with open(os.path.join(current_app.config.get("TMPDIR", "/tmp"),
"output", "PERM_" + file_name), "r", encoding="utf-8") as the_file: