diff options
author | Frederick Muriuki Muriithi | 2021-11-29 11:52:26 +0300 |
---|---|---|
committer | Frederick Muriuki Muriithi | 2021-11-29 12:05:16 +0300 |
commit | 6b147173d514093ec4e461f5843170c968290e5e (patch) | |
tree | 2ab665a999b32773803621c006a77f10db9bb353 /gn3 | |
parent | 109b233f698a2ce41bb5634f12e966ad02798819 (diff) | |
download | genenetwork3-6b147173d514093ec4e461f5843170c968290e5e.tar.gz |
Provide entry-point function for the partial correlations
Issue:
https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/partial-correlations.gmi
* Provide the entry-point function to the partial correlation feature. This is
the function that ochestrates the fetching of the data, and processing it
for output by the API endpoint (to be implemented).
Diffstat (limited to 'gn3')
-rw-r--r-- | gn3/computations/partial_correlations.py | 357 | ||||
-rw-r--r-- | gn3/db/correlations.py | 11 |
2 files changed, 350 insertions, 18 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py index f43c4d4..869bee4 100644 --- a/gn3/computations/partial_correlations.py +++ b/gn3/computations/partial_correlations.py @@ -6,15 +6,20 @@ GeneNetwork1. """ import math -from functools import reduce +from functools import reduce, partial from typing import Any, Tuple, Union, Sequence -from scipy.stats import pearsonr, spearmanr import pandas import pingouin +from scipy.stats import pearsonr, spearmanr from gn3.settings import TEXTDIR +from gn3.function_helpers import compose from gn3.data_helpers import parse_csv_line +from gn3.db.traits import export_informative +from gn3.db.traits import retrieve_trait_info, retrieve_trait_data +from gn3.db.species import species_name, translate_to_mouse_gene_id +from gn3.db.correlations import get_filename, fetch_all_database_data def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]): """ @@ -112,7 +117,7 @@ def find_identical_traits( return acc + ident[1] def __dictify_controls__(acc, control_item): - ckey = "{:.3f}".format(control_item[0]) + ckey = tuple("{:.3f}".format(item) for item in control_item[0]) return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)} return (reduce(## for identical control traits @@ -212,7 +217,7 @@ def partial_correlations_fast(# pylint: disable=[R0913, R0914] function in GeneNetwork1. """ assert method in ("spearman", "pearson") - with open(f"{TEXTDIR}/{database_filename}", "r") as dataset_file: + with open(database_filename, "r") as dataset_file: dataset = tuple(dataset_file.readlines()) good_dataset_samples = good_dataset_samples_indexes( @@ -286,32 +291,37 @@ def compute_partial( """ # replace the R code with `pingouin.partial_corr` def __compute_trait_info__(target): + targ_vals = target[0] + targ_name = target[1] primary = [ - prim for targ, prim in zip(target, primary_vals) + prim for targ, prim in zip(targ_vals, primary_vals) if targ is not None] + datafrm = build_data_frame( primary, - [targ for targ in target if targ is not None], - [cont for i, cont in enumerate(control_vals) - if target[i] is not None]) + tuple(targ for targ in targ_vals if targ is not None), + tuple(cont for i, cont in enumerate(control_vals) + if target[i] is not None)) covariates = "z" if datafrm.shape[1] == 3 else [ col for col in datafrm.columns if col not in ("x", "y")] ppc = pingouin.partial_corr( - data=datafrm, x="x", y="y", covar=covariates, method=method) - pc_coeff = ppc["r"] + data=datafrm, x="x", y="y", covar=covariates, method=( + "pearson" if "pearson" in method.lower() else "spearman")) + pc_coeff = ppc["r"][0] zero_order_corr = pingouin.corr( - datafrm["x"], datafrm["y"], method=method) + datafrm["x"], datafrm["y"], method=( + "pearson" if "pearson" in method.lower() else "spearman")) if math.isnan(pc_coeff): return ( - target[1], len(primary), pc_coeff, 1, zero_order_corr["r"], - zero_order_corr["p-val"]) + targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0], + zero_order_corr["p-val"][0]) return ( - target[1], len(primary), pc_coeff, - (ppc["p-val"] if not math.isnan(ppc["p-val"]) else ( + targ_name, len(primary), pc_coeff, + (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else ( 0 if (abs(pc_coeff - 1) < 0.0000001) else 1)), - zero_order_corr["r"], zero_order_corr["p-val"]) + zero_order_corr["r"][0], zero_order_corr["p-val"][0]) return tuple( __compute_trait_info__(target) @@ -360,3 +370,318 @@ def partial_correlations_normal(# pylint: disable=R0913 for idx, item in enumerate(all_correlations))) return len(trait_database), all_correlations + +def partial_corrs( + conn, samples , primary_vals, control_vals, return_number, species, input_trait_geneid, + input_trait_symbol, tissue_probeset_freeze_id, method, dataset, database_filename): + """ + Compute the partial correlations, selecting the fast or normal method + depending on the existence of the database text file. + + This is a partial migration of the + `web.webqtl.correlation.PartialCorrDBPage.__init__` function in + GeneNetwork1. + """ + if database_filename: + return partial_correlations_fast( + samples, primary_vals, control_vals, database_filename, + ( + fetch_literature_correlations( + species, input_trait_geneid, dataset, return_number, conn) + if "literature" in method.lower() else + fetch_tissue_correlations( + dataset, input_trait_symbol, tissue_probeset_freeze_id, + method, return_number, conn)), + method, + ("literature" if method.lower() == "sgo literature correlation" + else ("tissue" if "tissue" in method.lower() else "genetic"))) + + trait_database, data_start_pos = fetch_all_database_data( + conn, species, input_trait_geneid, input_trait_symbol, samples, dataset, + method, return_number, tissue_probeset_freeze_id) + return partial_correlations_normal( + primary_vals, control_vals, input_trait_geneid, trait_database, + data_start_pos, dataset, method) + +def literature_correlation_by_list( + conn: Any, input_trait_mouse_geneid: int, species: str, + trait_list: Tuple[dict]) -> Tuple[dict]: + """ + This is a migration of the + `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList` + function in GeneNetwork1. + """ + if any((lambda t: ( + bool(t.get("tissue_corr")) and + bool(t.get("tissue_p_value"))))(trait) + for trait in trait_list): + temp_table_name = f"LITERATURE{random_string(8)}" + q1 = ( + f"CREATE TEMPORARY TABLE {temporary_table_name} " + "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, " + "value DOUBLE)") + q2 = ( + f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) " + "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 " + "WHERE GeneId1=%(geneid)s") + q3 = ( + "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) " + "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 " + "WHERE GeneId2=%s AND GeneId1 != %(geneid)s") + + def __set_mouse_geneid__(trait): + if trait.get("geneid"): + return { + **trait, + "mouse_geneid": translate_to_mouse_gene_id(trait.get("geneid")) + } + return {**trait, "mouse_geneid": 0} + + def __retrieve_lcorr__(cursor, geneids): + cursor.execute( + f"SELECT GeneId2, value FROM {temporary_table_name} " + "WHERE GeneId2 IN %(geneids)s", + geneids = geneids) + return {geneid: value for geneid, value in cursor.fetchall()} + + with conn.cursor() as cursor: + cursor.execute(q1) + cursor.execute(q2) + cursor.execute(q3) + + traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list) + lcorrs = __retrieve_lcorr__( + cursor, ( + trait["mouse_geneid"] for trait in traits + if (trait["mouse_geneid"] != 0 and + trait["mouse_geneid"].find(";") < 0))) + return tuple( + {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)} + for trait in traits) + + return trait_list + return trait_list + +def tissue_correlation_by_list( + conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int, + method: str, trait_list: Tuple[dict]) -> Tuple[dict]: + """ + This is a migration of the + `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList` + function in GeneNetwork1. + """ + def __add_tissue_corr__(trait, primary_trait_value, trait_value): + result = pingouin.corr( + primary_trait_values, target_trait_values, + method=("spearman" if "spearman" in method.lower() else "pearson")) + return { + **trait, + "tissue_corr": result["r"], + "tissue_p_value": result["p-val"] + } + + if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list): + prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait( + (primary_trait_symbol,), tissue_probeset_freeze_id, conn) + if primary_trait_symbol.lower() in prim_trait_symbol_value_dict: + primary_trait_value = prim_trait_symbol_value_dict[prim_trait_symbol.lower()] + gene_symbol_list = tuple( + trait for trait in trait_list if "symbol" in trait.keys()) + symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait( + gene_symbol_list, tissue_probeset_freeze_id, conn) + return tuple( + __add_tissue_corr__( + trait, primary_trait_value, + symbol_value_dict[trait["symbol"].lower()]) + for trait in trait_list + if ("symbol" in trait and + bool(trait["symbol"]) and + trait["symbol"].lower() in symbol_value_dict)) + return tuple({ + **trait, + "tissue_corr": None, + "tissue_p_value": None + } for trait in trait_list) + return trait_list + +def partial_correlations_entry( + conn: Any, primary_trait_name: str, + control_trait_names: Tuple[str, ...], method: str, + criteria: int, group: str, target_db_name: str) -> dict: + """ + This is the 'ochestration' function for the partial-correlation feature. + + This function will dispatch the functions doing data fetches from the + database (and various other places) and feed that data to the functions + doing the conversions and computations. It will then return the results of + all of that work. + + This function is doing way too much. Look into splitting out the + functionality into smaller functions that do fewer things. + """ + threshold = 0 + corr_min_informative = 4 + + primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn) + primary_trait_data = retrieve_trait_data(primary_trait, conn) + primary_samples, primary_values, primary_variances = export_informative( + primary_trait_data) + + cntrl_traits = tuple( + retrieve_trait_info(threshold, trait_full_name, conn) + for trait_full_name in control_trait_names) + cntrl_traits_data = tuple( + retrieve_trait_data(cntrl_trait, conn) + for cntrl_trait in cntrl_traits) + species = species_name(conn, group) + + (cntrl_samples, + cntrl_values, + cntrl_variances, + cntrl_ns) = control_samples(cntrl_traits_data, primary_samples) + + common_primary_control_samples = primary_samples + fixed_primary_vals = primary_values + fixed_control_vals = cntrl_values + if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples): + (common_primary_control_samples, + fixed_primary_vals, + fixed_control_vals, + primary_variances, + cntrl_variances) = fix_samples(primary_trait, cntrl_traits) + + if len(common_primary_control_samples) < corr_min_informative: + return { + "status": "error", + "message": ( + f"Fewer than {corr_min_informative} samples data entered for " + f"{group} dataset. No calculation of correlation has been " + "attempted."), + "error_type": "Inadequate Samples"} + + identical_traits_names = find_identical_traits( + primary_trait_name, primary_values, control_trait_names, cntrl_values) + if len(identical_traits_names) > 0: + return { + "status": "error", + "message": ( + f"{identical_traits_names[0]} and {identical_traits_names[1]} " + "have the same values for the {len(fixed_primary_vals)} " + "samples that will be used to compute the partial correlation " + "(common for all primary and control traits). In such cases, " + "partial correlation cannot be computed. Please re-select your " + "traits."), + "error_type": "Identical Traits"} + + input_trait_geneid = primary_trait.get("geneid") + input_trait_symbol = primary_trait.get("symbol") + input_trait_mouse_geneid = translate_to_mouse_gene_id( + species, input_trait_geneid, conn) + + tissue_probeset_freeze_id = 1 + db_type = primary_trait["db"]["dataset_type"] + db_name = primary_trait["db"]["dataset_name"] + + if db_type == "ProbeSet" and method.lower() in ( + "sgo literature correlation", + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho"): + return { + "status": "error", + "message": ( + "Wrong correlation type: It is not possible to compute the " + f"{method} between your trait and data in the {target_db_name} " + "database. Please try again after selecting another type of " + "correlation."), + "error_type": "Correlation Type"} + + if (method.lower() == "sgo literature correlation" and ( + input_trait_geneid is None or + check_for_literature_info(conn, input_trait_mouse_geneid))): + return { + "status": "error", + "message": ( + "No Literature Information: This gene does not have any " + "associated Literature Information."), + "error_type": "Literature Correlation"} + + if (method.lower() in ( + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho") + and input_trait_symbol is None): + return { + "status": "error", + "message": ( + "No Tissue Correlation Information: This gene does not have " + "any associated Tissue Correlation Information."), + "error_type": "Tissue Correlation"} + + if (method.lower() in ( + "tissue correlation, pearson's r", + "tissue correlation, spearman's rho") + and check_symbol_for_tissue_correlation( + conn, tissue_probeset_freeze_id, input_trait_symbol)): + return { + "status": "error", + "message": ( + "No Tissue Correlation Information: This gene does not have " + "any associated Tissue Correlation Information."), + "error_type": "Tissue Correlation"} + + database_filename = get_filename(conn, target_db_name, TEXTDIR) + total_traits, all_correlations = partial_corrs( + conn, common_primary_control_samples, fixed_primary_vals, + fixed_control_vals, len(fixed_primary_vals), species, + input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id, + method, primary_trait["db"], database_filename) + + + def __make_sorter__(method): + def __sort_6__(x): + return x[6] + + def __sort_3__(x): + return x[3] + + if "literature" in method.lower(): + return __sort_6__ + + if "tissue" in method.lower(): + return __sort_6__ + + return __sort_3__ + + sorted_correlations = sorted( + all_correlations, key=__make_sorter__(method)) + + add_lit_corr_and_tiss_corr = compose( + partial( + literature_correlation_by_list, conn, input_trait_mouse_geneid, + species), + partial( + tissue_correlation_by_list, conn, input_trait_symbol, + tissue_probeset_freeze_id, method)) + + trait_list = add_lit_corr_and_tiss_corr(tuple( + { + **retrieve_trait_info( + threshold, + f"{primary_trait['db']['dataset_name']}::{item[0]}", + conn), + "noverlap": item[1], + "partial_corr": item[2], + "partial_corr_p_value": item[3], + "corr": item[4], + "corr_p_value": item[5], + "rank_order": (1 if "spearman" in method.lower() else 0), + **({ + "tissue_corr": item[6], + "tissue_p_value": item[7]} + if len(item) == 8 else {}), + **({"l_corr": item[6]} + if len(item) == 7 else {}) + } + for item in + sorted_correlations[:min(criteria, len(all_correlations))])) + + return trait_list diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py index 401fd91..2a38bae 100644 --- a/gn3/db/correlations.py +++ b/gn3/db/correlations.py @@ -10,8 +10,6 @@ from gn3.random import random_string from gn3.data_helpers import partition_all from gn3.db.species import translate_to_mouse_gene_id -from gn3.computations.partial_correlations import correlations_of_all_tissue_traits - def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[ str, bool]: """ @@ -282,6 +280,15 @@ def build_temporary_tissue_correlations_table( # We should probably pass the `correlations_of_all_tissue_traits` function # as an argument to this function and get rid of the one call immediately # following this comment. + from gn3.computations.partial_correlations import correlations_of_all_tissue_traits + # This import above is necessary within the function to avoid + # circular-imports. + # + # + # This import above is indicative of convoluted code, with the computation + # being interwoven with the data retrieval. This needs to be changed, such + # that the function being imported here is no longer necessary, or have the + # imported function passed to this function as an argument. symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits( fetch_gene_symbol_tissue_value_dict_for_trait( (trait_symbol,), probeset_freeze_id, conn), |