aboutsummaryrefslogtreecommitdiff
path: root/gn3
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-12-30 11:08:11 +0300
committerFrederick Muriuki Muriithi2022-01-10 08:15:19 +0300
commit032b259a3088402d90ca6d24bb987d5fb6ae1a57 (patch)
tree237bc5216c8f1e83e87937caa52a99208832538f /gn3
parentbebf05c5975c706be05053d362ababd2419250be (diff)
downloadgenenetwork3-032b259a3088402d90ca6d24bb987d5fb6ae1a57.tar.gz
Add optimised entry for partial correlations
Issue: * Function `gn3.computations.partial_correlations_optimised.partial_correlations_entry` is a copy of the `gn3.computations.partial_correlation.partial_correlations_entry` function that is optimised for better performance. The optimised function is intended to replace the unoptimised one, but it is included in this commit for comparison purposes, and to maintain some historical context for doing it this way.
Diffstat (limited to 'gn3')
-rw-r--r--gn3/computations/partial_correlations_optimised.py244
1 files changed, 244 insertions, 0 deletions
diff --git a/gn3/computations/partial_correlations_optimised.py b/gn3/computations/partial_correlations_optimised.py
new file mode 100644
index 0000000..601289c
--- /dev/null
+++ b/gn3/computations/partial_correlations_optimised.py
@@ -0,0 +1,244 @@
+"""
+This contains an optimised version of the
+ `gn3.computations.partial_correlations.partial_correlations_entry`
+function.
+"""
+from functools import partial
+from typing import Any, Tuple
+
+from gn3.settings import TEXTDIR
+from gn3.function_helpers import compose
+from gn3.db.partial_correlations import traits_info, traits_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.traits import export_informative, retrieve_trait_dataset
+from gn3.db.correlations import (
+ get_filename,
+ check_for_literature_info,
+ check_symbol_for_tissue_correlation)
+from gn3.computations.partial_correlations import (
+ fix_samples,
+ partial_corrs,
+ control_samples,
+ trait_for_output,
+ find_identical_traits,
+ tissue_correlation_by_list,
+ literature_correlation_by_list)
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+ conn: Any, primary_trait_name: str,
+ control_trait_names: Tuple[str, ...], method: str,
+ criteria: int, target_db_name: str) -> dict:
+ """
+ This is the 'ochestration' function for the partial-correlation feature.
+
+ This function will dispatch the functions doing data fetches from the
+ database (and various other places) and feed that data to the functions
+ doing the conversions and computations. It will then return the results of
+ all of that work.
+
+ This function is doing way too much. Look into splitting out the
+ functionality into smaller functions that do fewer things.
+ """
+ threshold = 0
+ corr_min_informative = 4
+
+ all_traits = traits_info(
+ conn, threshold, (primary_trait_name,) + control_trait_names)
+ all_traits_data = traits_data(conn, all_traits)
+
+ # primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
+ primary_trait = tuple(
+ trait for trait in all_traits
+ if trait["trait_fullname"] == primary_trait_name)[0]
+ group = primary_trait["db"]["group"]
+ # primary_trait_data = retrieve_trait_data(primary_trait, conn)
+ primary_trait_data = all_traits_data[primary_trait["trait_name"]]
+ primary_samples, primary_values, _primary_variances = export_informative(
+ primary_trait_data)
+
+ # cntrl_traits = tuple(
+ # retrieve_trait_info(threshold, trait_full_name, conn)
+ # for trait_full_name in control_trait_names)
+ # cntrl_traits_data = tuple(
+ # retrieve_trait_data(cntrl_trait, conn)
+ # for cntrl_trait in cntrl_traits)
+ cntrl_traits = tuple(
+ trait for trait in all_traits
+ if trait["trait_fullname"] != primary_trait_name)
+ cntrl_traits_data = tuple(
+ data for trait_name, data in all_traits_data.items()
+ if trait_name != primary_trait["trait_name"])
+ species = species_name(conn, group)
+
+ (cntrl_samples,
+ cntrl_values,
+ _cntrl_variances,
+ _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+ common_primary_control_samples = primary_samples
+ fixed_primary_vals = primary_values
+ fixed_control_vals = cntrl_values
+ if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+ (common_primary_control_samples,
+ fixed_primary_vals,
+ fixed_control_vals,
+ _primary_variances,
+ _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+ if len(common_primary_control_samples) < corr_min_informative:
+ return {
+ "status": "error",
+ "message": (
+ f"Fewer than {corr_min_informative} samples data entered for "
+ f"{group} dataset. No calculation of correlation has been "
+ "attempted."),
+ "error_type": "Inadequate Samples"}
+
+ identical_traits_names = find_identical_traits(
+ primary_trait_name, primary_values, control_trait_names, cntrl_values)
+ if len(identical_traits_names) > 0:
+ return {
+ "status": "error",
+ "message": (
+ f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+ "have the same values for the {len(fixed_primary_vals)} "
+ "samples that will be used to compute the partial correlation "
+ "(common for all primary and control traits). In such cases, "
+ "partial correlation cannot be computed. Please re-select your "
+ "traits."),
+ "error_type": "Identical Traits"}
+
+ input_trait_geneid = primary_trait.get("geneid", 0)
+ input_trait_symbol = primary_trait.get("symbol", "")
+ input_trait_mouse_geneid = translate_to_mouse_gene_id(
+ species, input_trait_geneid, conn)
+
+ tissue_probeset_freeze_id = 1
+ db_type = primary_trait["db"]["dataset_type"]
+
+ if db_type == "ProbeSet" and method.lower() in (
+ "sgo literature correlation",
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return {
+ "status": "error",
+ "message": (
+ "Wrong correlation type: It is not possible to compute the "
+ f"{method} between your trait and data in the {target_db_name} "
+ "database. Please try again after selecting another type of "
+ "correlation."),
+ "error_type": "Correlation Type"}
+
+ if (method.lower() == "sgo literature correlation" and (
+ bool(input_trait_geneid) is False or
+ check_for_literature_info(conn, input_trait_mouse_geneid))):
+ return {
+ "status": "error",
+ "message": (
+ "No Literature Information: This gene does not have any "
+ "associated Literature Information."),
+ "error_type": "Literature Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and bool(input_trait_symbol) is False):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and check_symbol_for_tissue_correlation(
+ conn, tissue_probeset_freeze_id, input_trait_symbol)):
+ return {
+ "status": "error",
+ "message": (
+ "No Tissue Correlation Information: This gene does not have "
+ "any associated Tissue Correlation Information."),
+ "error_type": "Tissue Correlation"}
+
+ target_dataset = retrieve_trait_dataset(
+ ("Temp" if "Temp" in target_db_name else
+ ("Publish" if "Publish" in target_db_name else
+ "Geno" if "Geno" in target_db_name else "ProbeSet")),
+ {"db": {"dataset_name": target_db_name}, "trait_name": "_"},
+ threshold,
+ conn)
+
+ database_filename = get_filename(conn, target_db_name, TEXTDIR)
+ _total_traits, all_correlations = partial_corrs(
+ conn, common_primary_control_samples, fixed_primary_vals,
+ fixed_control_vals, len(fixed_primary_vals), species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, {**target_dataset, "dataset_type": target_dataset["type"]}, database_filename)
+
+
+ def __make_sorter__(method):
+ def __sort_6__(row):
+ return row[6]
+
+ def __sort_3__(row):
+ return row[3]
+
+ if "literature" in method.lower():
+ return __sort_6__
+
+ if "tissue" in method.lower():
+ return __sort_6__
+
+ return __sort_3__
+
+ # sorted_correlations = sorted(
+ # all_correlations, key=__make_sorter__(method))
+
+ add_lit_corr_and_tiss_corr = compose(
+ partial(literature_correlation_by_list, conn, species),
+ partial(
+ tissue_correlation_by_list, conn, input_trait_symbol,
+ tissue_probeset_freeze_id, method))
+
+ selected_results = sorted(
+ all_correlations,
+ key=__make_sorter__(method))[:min(criteria, len(all_correlations))]
+ traits_list_corr_info = {
+ "{target_dataset['dataset_name']}::{item[0]}": {
+ "noverlap": item[1],
+ "partial_corr": item[2],
+ "partial_corr_p_value": item[3],
+ "corr": item[4],
+ "corr_p_value": item[5],
+ "rank_order": (1 if "spearman" in method.lower() else 0),
+ **({
+ "tissue_corr": item[6],
+ "tissue_p_value": item[7]}
+ if len(item) == 8 else {}),
+ **({"l_corr": item[6]}
+ if len(item) == 7 else {})
+ } for item in selected_results}
+
+ trait_list = add_lit_corr_and_tiss_corr(tuple(
+ {**trait, **traits_list_corr_info.get(trait["trait_fullname"], {})}
+ for trait in traits_info(
+ conn, threshold,
+ tuple(
+ f"{target_dataset['dataset_name']}::{item[0]}"
+ for item in selected_results))))
+
+ return {
+ "status": "success",
+ "results": {
+ "primary_trait": trait_for_output(primary_trait),
+ "control_traits": tuple(
+ trait_for_output(trait) for trait in cntrl_traits),
+ "correlations": tuple(
+ trait_for_output(trait) for trait in trait_list),
+ "dataset_type": target_dataset["type"],
+ "method": "spearman" if "spearman" in method.lower() else "pearson"
+ }}