aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
authorAlexander Kabui2021-05-12 19:49:55 +0300
committerAlexander Kabui2021-05-12 19:49:55 +0300
commitf88a2c3161c71d58c91c3030bd303a86846c5a73 (patch)
treefeeb4baeb516877a75358368c53fe8ad5624b286 /gn3/computations
parentbeccacde5c9c7317bfe795e5c8c4ebe033f39f89 (diff)
downloadgenenetwork3-f88a2c3161c71d58c91c3030bd303a86846c5a73.tar.gz
rename tissue_correlation_for_trait_list with tissue_correlation_for_trait
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/correlations.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index 3cea69d..21bc82e 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -222,7 +222,7 @@ probet
return corr_results
-def tissue_correlation_for_trait_list(
+def tissue_correlation_for_trait(
primary_tissue_vals: List,
target_tissues_values: List,
corr_method: str,
@@ -378,7 +378,7 @@ def compute_all_lit_correlation(conn, trait_lists: List,
def compute_all_tissue_correlation(primary_tissue_dict: dict,
target_tissues_data: dict,
corr_method: str):
- """Function acts as an abstraction for tissue_correlation_for_trait_list\
+ """Function acts as an abstraction for tissue_correlation_for_trait\
required input are target tissue object and primary tissue trait\
target tissues data contains the trait_symbol_dict and symbol_tissue_vals
@@ -398,7 +398,7 @@ def compute_all_tissue_correlation(primary_tissue_dict: dict,
target_tissue_vals = target_tissue_obj.get("tissue_values")
- tissue_result = tissue_correlation_for_trait_list(
+ tissue_result = tissue_correlation_for_trait(
primary_tissue_vals=primary_tissue_vals,
target_tissues_values=target_tissue_vals,
trait_id=trait_id,
@@ -459,7 +459,7 @@ def compute_tissue_correlation(primary_tissue_dict: dict,
with multiprocessing.Pool(4) as pool:
results = pool.starmap(
- tissue_correlation_for_trait_list, processed_values)
+ tissue_correlation_for_trait, processed_values)
for result in results:
tissues_results.append(result)