1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
|
from flask import Flask, g, url_for
import string
from PIL import (Image)
from utility.logger import getLogger
logger = getLogger(__name__)
from base import species
from base import webqtlConfig
class SnpBrowser(object):
def __init__(self, start_vars):
self.strain_lists = get_browser_sample_lists()
self.initialize_parameters(start_vars)
if self.first_run == "false":
self.filtered_results = self.get_browser_results()
self.table_rows = self.get_table_rows()
self.rows_count = len(self.table_rows)
del self.filtered_results
if 'sEcho' not in start_vars:
self.table_rows = []
if self.limit_strains == "true":
self.header_fields, self.empty_field_count, self.header_data_names = get_header_list(variant_type = self.variant_type, strains = self.chosen_strains, empty_columns = self.empty_columns)
else:
self.header_fields, self.empty_field_count, self.header_data_names = get_header_list(variant_type = self.variant_type, strains = self.strain_lists, species = self.species_name, empty_columns = self.empty_columns)
def initialize_parameters(self, start_vars):
if 'first_run' in start_vars:
self.first_run = "false"
else:
self.first_run = "true"
self.allele_list = []
self.variant_type = "SNP"
if 'variant' in start_vars:
self.variant_type = start_vars['variant']
self.species_name = "Mouse"
self.species_id = 1
if 'species' in start_vars:
self.species_name = start_vars['species']
if self.species_name.capitalize() == "Rat":
self.species_id = 2
self.mouse_chr_list = []
self.rat_chr_list = []
mouse_species_ob = species.TheSpecies(species_name="Mouse")
for key in mouse_species_ob.chromosomes.chromosomes:
self.mouse_chr_list.append(mouse_species_ob.chromosomes.chromosomes[key].name)
rat_species_ob = species.TheSpecies(species_name="Rat")
for key in rat_species_ob.chromosomes.chromosomes:
self.rat_chr_list.append(rat_species_ob.chromosomes.chromosomes[key].name)
if self.species_id == 1:
self.this_chr_list = self.mouse_chr_list
else:
self.this_chr_list = self.rat_chr_list
if self.first_run == "true":
self.chr = "19"
self.start_mb = 30.1
self.end_mb = 30.12
else:
if 'gene_name' in start_vars:
if start_vars['gene_name'] != "":
self.gene_name = start_vars['gene_name']
else:
self.gene_name = ""
self.chr = start_vars['chr']
try:
self.start_mb = float(start_vars['start_mb'])
self.end_mb = float(start_vars['end_mb'])
except:
self.start_mb = 0.0
self.end_mb = 0.0
else:
try:
self.chr = start_vars['chr']
self.start_mb = float(start_vars['start_mb'])
self.end_mb = float(start_vars['end_mb'])
except:
self.chr = "1"
self.start_mb = 0.0
self.end_mb = 0.0
self.limit_strains = "true"
if self.first_run == "false":
if 'limit_strains' not in start_vars:
self.limit_strains = "false"
else:
if start_vars['limit_strains'] == "false":
self.limit_strains = "false"
self.chosen_strains_mouse = ["C57BL/6J",
"DBA/2J",
"A/J",
"129S1/SvImJ",
"NOD/ShiLtJ",
"NZO/HlLtJ",
"WSB/EiJ",
"PWK/PhJ",
"CAST/EiJ"]
self.chosen_strains_rat = ["BN", "F344", "WLI", "WMI"]
if 'chosen_strains_mouse' in start_vars:
self.chosen_strains_mouse = start_vars['chosen_strains_mouse'].split(",")
if 'chosen_strains_rat' in start_vars:
self.chosen_strains_rat = start_vars['chosen_strains_rat'].split(",")
if self.species_id == 1:
self.chosen_strains = self.chosen_strains_mouse
else:
self.chosen_strains = self.chosen_strains_rat
self.domain = "All"
if 'domain' in start_vars:
self.domain = start_vars['domain']
self.function = "All"
if 'function' in start_vars:
self.function = start_vars['function']
self.source = "All"
if 'source' in start_vars:
self.source = start_vars['source']
self.criteria = ">="
if 'criteria' in start_vars:
self.criteria = start_vars['criteria']
self.score = 0.0
if 'score' in start_vars:
self.score = start_vars['score']
self.redundant = "false"
if self.first_run == "false" and 'redundant' in start_vars:
self.redundant = "true"
self.diff_alleles = "true"
if self.first_run == "false":
if 'diff_alleles' not in start_vars:
self.diff_alleles = "false"
else:
if start_vars['diff_alleles'] == "false":
self.diff_alleles = "false"
def get_browser_results(self):
self.snp_list = None
if self.gene_name != "":
if self.species_id != 0:
query = "SELECT geneSymbol, chromosome, txStart, txEnd FROM GeneList WHERE SpeciesId = %s AND geneSymbol = '%s'" % (self.species_id, self.gene_name)
else:
query = "SELECT geneSymbol, chromosome, txStart, txEnd FROM GeneList WHERE geneSymbol = '%s'" % (self.gene_name)
result = g.db.execute(query).fetchone()
if result:
self.gene_name, self.chr, self.start_mb, self.end_mb = result
else:
result_snp = None
if self.variant_type == "SNP":
if self.gene_name[:2] == "rs":
query = "SELECT Id, Chromosome, Position, Position+0.000001 FROM SnpAll WHERE Rs = '%s'" % self.gene_name
else:
if self.species_id != 0:
query = "SELECT Id, Chromosome, Position, Position+0.000001 FROM SnpAll where SpeciesId = %s AND SnpName = '%s'" % (self.species_id, self.gene_name)
else:
query = "SELECT Id, Chromosome, Position, Position+0.000001 FROM SnpAll where SnpName = '%s'" % (self.gene_name)
result_snp = g.db.execute(query).fetchall()
if result_snp:
self.snp_list = [item[0] for item in result_snp]
self.chr = result_snp[0][1]
self.start_mb = result_snp[0][2]
self.end_mb = result_snp[0][3]
else:
return []
elif self.variant_type == "InDel":
if self.gene_name[0] == "I":
if self.species_id != 0:
query = "SELECT Id, Chromosome, Mb_start, Mb_end FROM IndelAll WHERE SpeciesId = %s AND Name = '%s'" % (self.species_id, self.gene_name)
else:
query = "SELECT Id, Chromosome, Mb_start, Mb_end FROM IndelAll WHERE Name = '%s'" % (self.gene_name)
result_snp = g.db.execute(query).fetchall()
if result_snp:
self.snp_list = [item[0] for item in result_snp]
self.chr = result_snp[0][1]
self.start_mb = result_snp[0][2]
self.end_mb = result_snp[0][3]
else:
return []
if self.variant_type == "SNP":
mouse_query = """
SELECT
a.*, b.*
FROM
SnpAll a, SnpPattern b
WHERE
a.SpeciesId = %s AND a.Chromosome = '%s' AND
a.Position >= %.6f AND a.Position < %.6f AND
a.Id = b.SnpId
ORDER BY a.Position
""" % (self.species_id, self.chr, self.start_mb, self.end_mb)
rat_query = """
SELECT
a.*, b.*
FROM
SnpAll a, RatSnpPattern b
WHERE
a.SpeciesId = %s AND a.Chromosome = '%s' AND
a.Position >= %.6f AND a.Position < %.6f AND
a.Id = b.SnpId
ORDER BY a.Position
""" % (self.species_id, self.chr, self.start_mb, self.end_mb)
if self.species_id == 1:
query = mouse_query
elif self.species_id == 2:
query = rat_query
elif self.variant_type == "InDel":
if self.species_id != 0:
query = """
SELECT
DISTINCT a.Name, a.Chromosome, a.SourceId, a.Mb_start, a.Mb_end, a.Strand, a.Type, a.Size, a.InDelSequence, b.Name
FROM
IndelAll a, SnpSource b
WHERE
a.SpeciesId = '%s' AND a.Chromosome = '%s' AND
a.Mb_start >= %2.6f AND a.Mb_start < (%2.6f+.0010) AND
b.Id = a.SourceId
ORDER BY a.Mb_start
""" % (self.species_id, self.chr, self.start_mb, self.end_mb)
else:
query = """
SELECT
DISTINCT a.Name, a.Chromosome, a.SourceId, a.Mb_start, a.Mb_end, a.Strand, a.Type, a.Size, a.InDelSequence, b.Name
FROM
IndelAll a, SnpSource b
WHERE
a.Chromosome = '%s' AND
a.Mb_start >= %2.6f AND a.Mb_start < (%2.6f+.0010) AND
b.Id = a.SourceId
ORDER BY a.Mb_start
""" % (self.chr, self.start_mb, self.end_mb)
results_all = g.db.execute(query).fetchall()
return self.filter_results(results_all)
def filter_results(self, results):
filtered_results = []
strain_index_list = [] #ZS: List of positions of selected strains in strain list
last_mb = -1
if self.limit_strains == "true" and len(self.chosen_strains) > 0:
for item in self.chosen_strains:
index = self.strain_lists[self.species_name.lower()].index(item)
strain_index_list.append(index)
for seq, result in enumerate(results):
result = list(result)
if self.variant_type == "SNP":
display_strains = []
snp_id, species_id, snp_name, rs, chr, mb, mb_2016, alleles, snp_source, conservation_score = result[:10]
effect_list = result[10:28]
if self.species_id == 1:
self.allele_list = result[30:]
elif self.species_id == 2:
self.allele_list = result[31:]
if self.limit_strains == "true" and len(self.chosen_strains) > 0:
for index in strain_index_list:
if self.species_id == 1:
display_strains.append(result[29+index])
elif self.species_id == 2:
display_strains.append(result[31+index])
self.allele_list = display_strains
effect_info_dict = get_effect_info(effect_list)
coding_domain_list = ['Start Gained', 'Start Lost', 'Stop Gained', 'Stop Lost', 'Nonsynonymous', 'Synonymous']
intron_domain_list = ['Splice Site', 'Nonsplice Site']
for key in effect_info_dict:
if key in coding_domain_list:
domain = ['Exon', 'Coding']
elif key in ['3\' UTR', '5\' UTR']:
domain = ['Exon', key]
elif key == "Unknown Effect In Exon":
domain = ['Exon', '']
elif key in intron_domain_list:
domain = ['Intron', key]
else:
domain = [key, '']
if 'Intergenic' in domain:
if self.gene_name != "":
gene_id = get_gene_id(self.species_id, self.gene_name)
gene = [gene_id, self.gene_name]
else:
gene = check_if_in_gene(species_id, chr, mb)
transcript = exon = function = function_details = ''
if self.redundant == "false" or last_mb != mb: # filter redundant
if self.include_record(domain, function, snp_source, conservation_score):
info_list = [snp_name, rs, chr, mb, alleles, gene, transcript, exon, domain, function, function_details, snp_source, conservation_score, snp_id]
info_list.extend(self.allele_list)
filtered_results.append(info_list)
last_mb = mb
else:
gene_list, transcript_list, exon_list, function_list, function_details_list = effect_info_dict[key]
for index, item in enumerate(gene_list):
gene = item
transcript = transcript_list[index]
if exon_list:
exon = exon_list[index]
else:
exon = ""
if function_list:
function = function_list[index]
if function == "Unknown Effect In Exon":
function = "Unknown"
else:
function = ""
if function_details_list:
function_details = "Biotype: " + function_details_list[index]
else:
function_details = ""
if self.redundant == "false" or last_mb != mb:
if self.include_record(domain, function, snp_source, conservation_score):
info_list = [snp_name, rs, chr, mb, alleles, gene, transcript, exon, domain, function, function_details, snp_source, conservation_score, snp_id]
info_list.extend(self.allele_list)
filtered_results.append(info_list)
last_mb = mb
elif self.variant_type == "InDel":
# The order of variables is important; this applies to anything from the variant table as indel
indel_name, indel_chr, source_id, indel_mb_start, indel_mb_end, indel_strand, indel_type, indel_size, indel_sequence, source_name = result
indel_type = indel_type.title()
if self.redundant == "false" or last_mb != indel_mb_start:
gene = "No Gene"
domain = conservation_score = snp_id = snp_name = rs = flank_3 = flank_5 = ncbi = function = ""
if self.include_record(domain, function, source_name, conservation_score):
filtered_results.append([indel_name, indel_chr, indel_mb_start, indel_mb_end, indel_strand, indel_type, indel_size, indel_sequence, source_name])
last_mb = indel_mb_start
else:
filtered_results.append(result)
return filtered_results
def get_table_rows(self):
""" Take results and put them into the order and format necessary for the tables rows """
if self.variant_type == "SNP":
gene_name_list = []
for item in self.filtered_results:
if item[5] and item[5] != "":
gene_name = item[5][1]
# eliminate duplicate gene_name
if gene_name and (gene_name not in gene_name_list):
gene_name_list.append(gene_name)
if len(gene_name_list) > 0:
gene_id_name_dict = get_gene_id_name_dict(self.species_id, gene_name_list)
#ZS: list of booleans representing which columns are entirely empty, so they aren't displayed on the page; only including ones that are sometimes empty (since there's always a location, etc)
self.empty_columns = {
"snp_source": "false",
"conservation_score": "false",
"gene_name": "false",
"transcript": "false",
"exon": "false",
"domain_2": "false",
"function": "false",
"function_details": "false"
}
the_rows = []
for i, result in enumerate(self.filtered_results):
this_row = {}
if self.variant_type == "SNP":
snp_name, rs, chr, mb, alleles, gene, transcript, exon, domain, function, function_details, snp_source, conservation_score, snp_id = result[:14]
allele_value_list = result[14:]
if rs:
snp_url = webqtlConfig.DBSNP % (rs)
snp_name = rs
else:
rs = ""
start_bp = int(mb*1000000 - 100)
end_bp = int(mb*1000000 + 100)
position_info = "chr%s:%d-%d" % (chr, start_bp, end_bp)
if self.species_id == 2:
snp_url = webqtlConfig.GENOMEBROWSER_URL % ("rn6", position_info)
else:
snp_url = webqtlConfig.GENOMEBROWSER_URL % ("mm10", position_info)
mb = float(mb)
mb_formatted = "%2.6f" % mb
if snp_source == "Sanger/UCLA":
source_url_1 = "http://www.sanger.ac.uk/resources/mouse/genomes/"
source_url_2 = "http://mouse.cs.ucla.edu/mousehapmap/beta/wellcome.html"
source_urls = [source_url_1, source_url_2]
self.empty_columns['snp_source'] = "true"
else:
source_urls = []
if not conservation_score:
conservation_score = ""
else:
self.empty_columns['conservation_score'] = "true"
if gene:
gene_name = gene[1]
# if gene_name has related gene_id, use gene_id for NCBI search
if (gene_name in gene_id_name_dict) and (gene_id_name_dict[gene_name] != None and gene_id_name_dict[gene_name] != ""):
gene_id = gene_id_name_dict[gene[1]]
gene_link = webqtlConfig.NCBI_LOCUSID % gene_id
else:
gene_link = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % gene_name
self.empty_columns['gene_name'] = "true"
else:
gene_name = ""
gene_link = ""
if transcript:
transcript_link = webqtlConfig.ENSEMBLETRANSCRIPT_URL % (transcript)
self.empty_columns['transcript'] = "true"
else:
transcript_link = ""
if exon:
exon = exon[1] # exon[0] is exon_id, exon[1] is exon_rank
self.empty_columns['exon'] = "true"
else:
exon = ""
if domain:
domain_1 = domain[0]
domain_2 = domain[1]
if domain_1 == "Intergenic" and gene != "":
domain_1 = gene_name
else:
if domain_1 == "Exon":
domain_1 = domain_1 + " " + exon
if domain_2 != "":
self.empty_columns['domain_2'] = "true"
if function:
self.empty_columns['function'] = "true"
function_list = []
if function_details:
function_list = function_details.strip().split(",")
function_list = [item.strip() for item in function_list]
function_list[0] = function_list[0].title()
function_details = ", ".join(item for item in function_list)
function_details = function_details.replace("_", " ")
function_details = function_details.replace("/", " -> ")
if function_details == "Biotype: Protein Coding":
function_details = function_details + ", Coding Region Unknown"
self.empty_columns['function_details'] = "true"
#[snp_href, chr, mb_formatted, alleles, snp_source_cell, conservation_score, gene_name_cell, transcript_href, exon, domain_1, domain_2, function, function_details]
base_color_dict = {"A": "#C33232", "C": "#1569C7", "T": "#CFCF32", "G": "#32C332",
"t": "#FF6", "c": "#5CB3FF", "a": "#F66", "g": "#CF9", ":": "#FFFFFF", "-": "#FFFFFF", "?": "#FFFFFF"}
the_bases = []
for j, item in enumerate(allele_value_list):
if item and isinstance(item, str):
this_base = [str(item), base_color_dict[item]]
else:
this_base = ""
the_bases.append(this_base)
this_row = {
"index": i + 1,
"rs": str(rs),
"snp_url": str(snp_url),
"snp_name": str(snp_name),
"chr": str(chr),
"mb_formatted": mb_formatted,
"alleles": str(alleles),
"snp_source": str(snp_source),
"source_urls": source_urls,
"conservation_score": str(conservation_score),
"gene_name": str(gene_name),
"gene_link": str(gene_link),
"transcript": str(transcript),
"transcript_link": str(transcript_link),
"exon": str(exon),
"domain_1": str(domain_1),
"domain_2": str(domain_2),
"function": str(function),
"function_details": str(function_details),
"allele_value_list": the_bases
}
elif self.variant_type == "InDel":
indel_name, indel_chr, indel_mb_s, indel_mb_e, indel_strand, indel_type, indel_size, indel_sequence, source_name = result
this_row = {
"index": i,
"indel_name": str(indel_name),
"indel_chr": str(indel_chr),
"indel_mb_s": str(indel_mb_s),
"indel_mb_e": str(indel_mb_e),
"indel_strand": str(indel_strand),
"indel_type": str(indel_type),
"indel_size": str(indel_size),
"indel_sequence": str(indel_sequence),
"source_name": str(source_name)
}
#this_row = [indel_name, indel_chr, indel_mb_s, indel_mb_e, indel_strand, indel_type, indel_size, indel_sequence, source_name]
the_rows.append(this_row)
return the_rows
def include_record(self, domain, function, snp_source, conservation_score):
""" Decide whether to add this record """
domain_satisfied = True
function_satisfied = True
different_alleles_satisfied = True
source_satisfied = True
if domain:
if len(domain) == 0:
if self.domain != "All":
domain_satisfied = False
else:
domain_satisfied = False
if domain[0].startswith(self.domain) or domain[1].startswith(self.domain) or self.domain == "All":
domain_satisfied = True
else:
if self.domain != "All":
domain_satisfied = False
if snp_source:
if len(snp_source) == 0:
if self.source != "All":
source_satisfied = False
else:
source_satisfied = False
if snp_source.startswith(self.source) or self.source == "All":
source_satisfied = True
else:
if self.source != "All":
source_satisfied = False
if function:
if len(function) == 0:
if self.function != "All":
function_satisfied = False
else:
function_satisfied = False
if self.function != "All":
if function.startswith(self.function):
function_satisfied = True
else:
function_satisfied = True
else:
if self.function != "All":
function_satisfied = False
if conservation_score:
score_as_float = float(conservation_score)
try:
input_score_float = float(self.score) # the user-input score
except:
input_score_float = 0.0
if self.criteria == ">=":
if score_as_float >= input_score_float:
score_satisfied = True
else:
score_satisfied = False
elif self.criteria == "==":
if score_as_float == input_score_float:
score_satisfied = True
else:
score_satisfied = False
elif self.criteria == "<=":
if score_as_float <= input_score_float:
score_satisfied = True
else:
score_satisfied = False
else:
try:
if float(self.score) > 0:
score_satisfied = False
else:
score_satisfied = True
except:
score_satisfied = True
if self.variant_type == "SNP" and self.diff_alleles == "true":
this_allele_list = []
for item in self.allele_list:
if item and isinstance(item, str) and (item.lower() not in this_allele_list) and (item != "-"):
this_allele_list.append(item.lower())
total_allele_count = len(this_allele_list)
if total_allele_count <= 1:
different_alleles_satisfied = False
else:
different_alleles_satisfied = True
else:
different_alleles_satisfied = True
return domain_satisfied and function_satisfied and source_satisfied and score_satisfied and different_alleles_satisfied
def snp_density_map(self, query, results):
canvas_width = 900
canvas_height = 200
snp_canvas = Image.new("RGBA", size=(canvas_width, canvas_height))
left_offset, right_offset, top_offset, bottom_offset = (30, 30, 40, 50)
plot_width = canvas_width - left_offset - right_offset
plot_height = canvas_height - top_offset - bottom_offset
y_zero = top_offset + plot_height/2
x_scale = plot_width/(self.end_mb - self.start_mb)
#draw clickable image map at some point
n_click = 80.0
click_step = plot_width/n_click
click_mb_step = (self.end_mb - self.start_mb)/n_click
#for i in range(n_click):
# href = url_for('snp_browser', first_run="false", chosen_strains_mouse=self.chosen_strains_mouse, chosen_strains_rat=self.chosen_strains_rat, variant=self.variant_type, species=self.species_name, gene_name=self.gene_name, chr=self.chr, start_mb=self.start_mb, end_mb=self.end_mb, limit_strains=self.limit_strains, domain=self.domain, function=self.function, criteria=self.criteria, score=self.score, diff_alleles=self.diff_alleles)
class SnpPage(object):
def __init__(self, request):
self.request_values = request
self.sEcho = self.request_values['sEcho']
self.snp_browser = SnpBrowser(request)
self.rows_count = self.snp_browser.rows_count
self.table_rows = self.snp_browser.table_rows
self.header_data_names = self.snp_browser.header_data_names
logger.info(self.table_rows[0])
self.sort_rows()
self.paginate_rows()
def sort_rows(self):
'''
Sorts the rows taking in to account the column (or columns) that the
user has selected.
'''
def is_reverse(str_direction):
''' Maps the 'desc' and 'asc' words to True or False. '''
return True if str_direction == 'desc' else False
if (self.request_values['iSortCol_0'] != "") and (int(self.request_values['iSortingCols']) > 0):
for i in range(0, int(self.request_values['iSortingCols'])):
column_number = int(self.request_values['iSortCol_' + str(i)])
column_name = self.header_data_names[column_number - 1]
sort_direction = self.request_values['sSortDir_' + str(i)]
self.table_rows = sorted(self.table_rows,
key=lambda x: x[column_name],
reverse=is_reverse(sort_direction))
def paginate_rows(self):
'''
Selects a subset of the filtered and sorted data based on if the table
has pagination, the current page and the size of each page.
'''
def requires_pagination():
''' Check if the table is going to be paginated '''
if self.request_values['iDisplayStart'] != "":
if int(self.request_values['iDisplayLength']) != -1:
return True
return False
if not requires_pagination():
return
start = int(self.request_values['iDisplayStart'])
length = int(self.request_values['iDisplayLength'])
# if search returns only one page
if len(self.table_rows) <= length:
# display only one page
self.table_rows = self.table_rows[start:]
else:
limit = -len(self.table_rows) + start + length
if limit < 0:
# display pagination
self.table_rows = self.table_rows[start:limit]
else:
# display last page of pagination
self.table_rows = self.table_rows[start:]
def get_page(self):
output = {}
output['sEcho'] = str(self.sEcho)
output['iTotalRecords'] = str(float('Nan'))
output['iTotalDisplayRecords'] = str(self.rows_count)
output['data'] = self.table_rows
return output
def get_browser_sample_lists(species_id=1):
strain_lists = {}
mouse_strain_list = []
query = "SHOW COLUMNS FROM SnpPattern;"
results = g.db.execute(query).fetchall();
for result in results[1:]:
mouse_strain_list.append(result[0])
rat_strain_list = []
query = "SHOW COLUMNS FROM RatSnpPattern;"
results = g.db.execute(query).fetchall();
for result in results[2:]:
rat_strain_list.append(result[0])
strain_lists['mouse'] = mouse_strain_list
strain_lists['rat'] = rat_strain_list
return strain_lists
def get_header_list(variant_type, strains, species = None, empty_columns = None):
if species == "Mouse":
strain_list = strains['mouse']
elif species == "Rat":
strain_list = strains['rat']
else:
strain_list = strains
empty_field_count = 0 #ZS: This is an awkward way of letting the javascript know the index where the allele value columns start; there's probably a better way of doing this
header_fields = []
header_data_names = []
if variant_type == "SNP":
header_fields.append(['Index', 'SNP ID', 'Chr', 'Mb', 'Alleles', 'Source', 'ConScore', 'Gene', 'Transcript', 'Exon', 'Domain 1', 'Domain 2', 'Function', 'Details'])
header_data_names = ['index', 'snp_name', 'chr', 'mb_formatted', 'alleles', 'snp_source', 'conservation_score', 'gene_name', 'transcript', 'exon', 'domain_1', 'domain_2', 'function', 'function_details']
header_fields.append(strain_list)
header_data_names += strain_list
if empty_columns != None:
if empty_columns['snp_source'] == "false":
empty_field_count += 1
header_fields[0].remove('Source')
if empty_columns['conservation_score'] == "false":
empty_field_count += 1
header_fields[0].remove('ConScore')
if empty_columns['gene_name'] == "false":
empty_field_count += 1
header_fields[0].remove('Gene')
if empty_columns['transcript'] == "false":
empty_field_count += 1
header_fields[0].remove('Transcript')
if empty_columns['exon'] == "false":
empty_field_count += 1
header_fields[0].remove('Exon')
if empty_columns['domain_2'] == "false":
empty_field_count += 1
header_fields[0].remove('Domain 2')
if empty_columns['function'] == "false":
empty_field_count += 1
header_fields[0].remove('Function')
if empty_columns['function_details'] == "false":
empty_field_count += 1
header_fields[0].remove('Details')
for col in empty_columns:
header_data_names.remove(col)
elif variant_type == "InDel":
header_fields = ['Index', 'ID', 'Type', 'InDel Chr', 'Mb Start', 'Mb End', 'Strand', 'Size', 'Sequence', 'Source']
header_data_names = ['index', 'indel_name', 'indel_type', 'indel_chr', 'indel_mb_s', 'indel_mb_e', 'indel_strand', 'indel_size', 'indel_sequence', 'source_name']
return header_fields, empty_field_count, header_data_names
def get_effect_details_by_category(effect_name = None, effect_value = None):
gene_list = []
transcript_list = []
exon_list = []
function_list = []
function_detail_list = []
tmp_list = []
gene_group_list = ['Upstream', 'Downstream', 'Splice Site', 'Nonsplice Site', '3\' UTR']
biotype_group_list = ['Unknown Effect In Exon', 'Start Gained', 'Start Lost', 'Stop Gained', 'Stop Lost', 'Nonsynonymous', 'Synonymous']
new_codon_group_list = ['Start Gained']
codon_effect_group_list = ['Start Lost', 'Stop Gained', 'Stop Lost', 'Nonsynonymous', 'Synonymous']
effect_detail_list = effect_value.strip().split('|')
effect_detail_list = [item.strip() for item in effect_detail_list]
for index, item in enumerate(effect_detail_list):
item_list = item.strip().split(',')
item_list = [item.strip() for item in item_list]
gene_id = item_list[0]
gene_name = item_list[1]
gene_list.append([gene_id, gene_name])
transcript_list.append(item_list[2])
if effect_name not in gene_group_list:
exon_id = item_list[3]
exon_rank = item_list[4]
exon_list.append([exon_id, exon_rank])
if effect_name in biotype_group_list:
biotype = item_list[5]
function_list.append(effect_name)
if effect_name in new_codon_group_list:
new_codon = item_list[6]
tmp_list = [biotype, new_codon]
function_detail_list.append(", ".join(tmp_list))
elif effect_name in codon_effect_group_list:
old_new_AA = item_list[6]
old_new_codon = item_list[7]
codon_num = item_list[8]
tmp_list = [biotype, old_new_AA, old_new_codon, codon_num]
function_detail_list.append(", ".join(tmp_list))
else:
function_detail_list.append(biotype)
return [gene_list, transcript_list, exon_list, function_list, function_detail_list]
def get_effect_info(effect_list):
domain = ""
effect_detail_list = []
effect_info_dict = {}
prime3_utr, prime5_utr, upstream, downstream, intron, nonsplice_site, splice_site, intergenic = effect_list[:8]
exon, non_synonymous_coding, synonymous_coding, start_gained, start_lost, stop_gained, stop_lost, unknown_effect_in_exon = effect_list[8:16]
if intergenic:
domain = "Intergenic"
effect_info_dict[domain] = ""
else:
# if not exon, get gene list/transcript list info
if upstream:
domain = "Upstream"
effect_detail_list = get_effect_details_by_category(effect_name='Upstream', effect_value=upstream)
effect_info_dict[domain] = effect_detail_list
if downstream:
domain = "Downstream"
effect_detail_list = get_effect_details_by_category(effect_name='Downstream', effect_value=downstream)
effect_info_dict[domain] = effect_detail_list
if intron:
if splice_site:
domain = "Splice Site"
effect_detail_list = get_effect_details_by_category(effect_name='Splice Site', effect_value=splice_site)
effect_info_dict[domain] = effect_detail_list
if nonsplice_site:
domain = "Nonsplice Site"
effect_detail_list = get_effect_details_by_category(effect_name='Nonsplice Site', effect_value=nonsplice_site)
effect_info_dict[domain] = effect_detail_list
# get gene, transcript_list, and exon info
if prime3_utr:
domain = "3\' UTR"
effect_detail_list = get_effect_details_by_category(effect_name='3\' UTR', effect_value=prime3_utr)
effect_info_dict[domain] = effect_detail_list
if prime5_utr:
domain = "5\' UTR"
effect_detail_list = get_effect_details_by_category(effect_name='5\' UTR', effect_value=prime5_utr)
effect_info_dict[domain] = effect_detail_list
if start_gained:
domain = "Start Gained"
effect_detail_list = get_effect_details_by_category(effect_name='Start Gained', effect_value=start_gained)
effect_info_dict[domain] = effect_detail_list
if unknown_effect_in_exon:
domain = "Unknown Effect In Exon"
effect_detail_list = get_effect_details_by_category(effect_name='Unknown Effect In Exon', effect_value=unknown_effect_in_exon)
effect_info_dict[domain] = effect_detail_list
if start_lost:
domain = "Start Lost"
effect_detail_list = get_effect_details_by_category(effect_name='Start Lost', effect_value=start_lost)
effect_info_dict[domain] = effect_detail_list
if stop_gained:
domain = "Stop Gained"
effect_detail_list = get_effect_details_by_category(effect_name='Stop Gained', effect_value=stop_gained)
effect_info_dict[domain] = effect_detail_list
if stop_lost:
domain = "Stop Lost"
effect_detail_list = get_effect_details_by_category(effect_name='Stop Lost', effect_value=stop_lost)
effect_info_dict[domain] = effect_detail_list
if non_synonymous_coding:
domain = "Nonsynonymous"
effect_detail_list = get_effect_details_by_category(effect_name='Nonsynonymous', effect_value=non_synonymous_coding)
effect_info_dict[domain] = effect_detail_list
if synonymous_coding:
domain = "Synonymous"
effect_detail_list = get_effect_details_by_category(effect_name='Synonymous', effect_value=synonymous_coding)
effect_info_dict[domain] = effect_detail_list
return effect_info_dict
def get_gene_id(species_id, gene_name):
query = """
SELECT
geneId
FROM
GeneList
WHERE
SpeciesId = %s AND geneSymbol = '%s'
""" % (species_id, gene_name)
result = g.db.execute(query).fetchone()
if len(result) > 0:
return result
else:
return ""
def get_gene_id_name_dict(species_id, gene_name_list):
gene_id_name_dict = {}
if len(gene_name_list) == 0:
return ""
gene_name_str_list = ["'" + gene_name + "'" for gene_name in gene_name_list]
gene_name_str = ",".join(gene_name_str_list)
query = """
SELECT
geneId, geneSymbol
FROM
GeneList
WHERE
SpeciesId = %s AND geneSymbol in (%s)
""" % (species_id, gene_name_str)
results = g.db.execute(query).fetchall()
if len(results) > 0:
for item in results:
gene_id_name_dict[item[1]] = item[0]
return gene_id_name_dict
def check_if_in_gene(species_id, chr, mb):
if species_id != 0: #ZS: Check if this is necessary
query = """SELECT geneId, geneSymbol
FROM GeneList
WHERE SpeciesId = {0} AND chromosome = '{1}' AND
(txStart < {2} AND txEnd > {2}); """.format(species_id, chr, mb)
else:
query = """SELECT geneId,geneSymbol
FROM GeneList
WHERE chromosome = '{0}' AND
(txStart < {1} AND txEnd > {1}); """.format(chr, mb)
result = g.db.execute(query).fetchone()
if result:
return [result[0], result[1]]
else:
return ""
|