aboutsummaryrefslogtreecommitdiff
path: root/wqflask/basicStatistics/BasicStatisticsPage_alpha.py
blob: 365143db13d6d891cc98d707d73bb822abe6eb83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by GeneNetwork Core Team 2010/10/20

import string
from math import *
import piddle as pid
import os

from htmlgen import HTMLgen2 as HT
import reaper

from utility import Plot
from base.webqtlTrait import webqtlTrait
from base.templatePage import templatePage
from utility import webqtlUtil
from base import webqtlConfig
from dbFunction import webqtlDatabaseFunction



class BasicStatisticsPage_alpha(templatePage):

    plotMinInformative = 4

    def __init__(self, fd):

        templatePage.__init__(self, fd)

        if not fd.genotype:
            fd.readGenotype()
            strainlist2 = fd.strainlist

        if fd.allstrainlist:
            strainlist2 = fd.allstrainlist

        fd.readData(strainlist2)

        specialStrains = []
        setStrains = []
        for item in strainlist2:
            if item not in fd.strainlist and item.find('F1') < 0:
                specialStrains.append(item)
            else:
                setStrains.append(item)
        specialStrains.sort()
        #So called MDP Panel
        if specialStrains:
            specialStrains = fd.f1list+fd.parlist+specialStrains

        self.plotType = fd.formdata.getvalue('ptype', '0')
        plotStrains = strainlist2
        if specialStrains:
            if self.plotType == '1':
                plotStrains = setStrains
            if self.plotType == '2':
                plotStrains = specialStrains

        self.dict['title'] = 'Basic Statistics'
        if not self.openMysql():
            return

        self.showstrains = 1
        self.identification = "unnamed trait"

        self.fullname = fd.formdata.getvalue('fullname', '')
        if self.fullname:
            self.Trait = webqtlTrait(fullname=self.fullname, cursor=self.cursor)
            self.Trait.retrieveInfo()
        else:
            self.Trait = None

        if fd.identification:
            self.identification = fd.identification
            self.dict['title'] = self.identification + ' / '+self.dict['title']
        TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee')

        ##should not display Variance, but cannot convert Variance to SE
        #print plotStrains, fd.allTraitData.keys()
        if len(fd.allTraitData) > 0:
            vals=[]
            InformData = []
            for _strain in plotStrains:
                if fd.allTraitData.has_key(_strain):
                    _val, _var = fd.allTraitData[_strain].val, fd.allTraitData[_strain].var
                    if _val != None:
                        vals.append([_strain, _val, _var])
                        InformData.append(_val)

            if len(vals) >= self.plotMinInformative:
                supertable2 = HT.TableLite(border=0, cellspacing=0, cellpadding=5,width="800")

                staIntro1 = HT.Paragraph("The table and plots below list the basic statistical analysis result of trait",HT.Strong(" %s" % self.identification))

                #####
                #anova
                #####
                traitmean, traitmedian, traitvar, traitstdev, traitsem, N = reaper.anova(InformData)
                TDStatis = HT.TD(width="360", valign="top")
                tbl2 = HT.TableLite(cellpadding=5, cellspacing=0, Class="collap")
                dataXZ = vals[:]
                dataXZ.sort(self.cmpValue)
                tbl2.append(HT.TR(HT.TD("Statistic",align="center", Class="fs14 fwb ffl b1 cw cbrb", width = 200),
                                HT.TD("Value", align="center", Class="fs14 fwb ffl b1 cw cbrb", width = 140)))
                tbl2.append(HT.TR(HT.TD("N of Cases",align="center", Class="fs13 b1 cbw c222"),
                                HT.TD(N,nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                tbl2.append(HT.TR(HT.TD("Mean",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                                HT.TD("%2.3f" % traitmean,nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                tbl2.append(HT.TR(HT.TD("Median",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                                HT.TD("%2.3f" % traitmedian,nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                #tbl2.append(HT.TR(HT.TD("Variance",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                #               HT.TD("%2.3f" % traitvar,nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                tbl2.append(HT.TR(HT.TD("SEM",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                                HT.TD("%2.3f" % traitsem,nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                tbl2.append(HT.TR(HT.TD("SD",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                                HT.TD("%2.3f" % traitstdev,nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                tbl2.append(HT.TR(HT.TD("Minimum",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                                HT.TD("%s" % dataXZ[0][1],nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                tbl2.append(HT.TR(HT.TD("Maximum",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                                HT.TD("%s" % dataXZ[-1][1],nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                if self.Trait and self.Trait.db.type == 'ProbeSet':
                    #IRQuest = HT.Href(text="Interquartile Range", url=webqtlConfig.glossaryfile +"#Interquartile",target="_blank", Class="fs14")
                    #IRQuest.append(HT.BR())
                    #IRQuest.append(" (fold difference)")
                    tbl2.append(HT.TR(HT.TD("Range (log2)",align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                            HT.TD("%2.3f" % (dataXZ[-1][1]-dataXZ[0][1]),nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                    tbl2.append(HT.TR(HT.TD(HT.Span("Range (fold)"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                            HT.TD("%2.2f" % pow(2.0,(dataXZ[-1][1]-dataXZ[0][1])), nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                    tbl2.append(HT.TR(HT.TD(HT.Span("Quartile Range",HT.BR()," (fold difference)"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),
                            HT.TD("%2.2f" % pow(2.0,(dataXZ[int((N-1)*3.0/4.0)][1]-dataXZ[int((N-1)/4.0)][1])), nowrap="yes",align="center", Class="fs13 b1 cbw c222")))

                    # (Lei Yan)
                    # 2008/12/19
                    self.Trait.retrieveData()
                    #XZ, 04/01/2009: don't try to get H2 value for probe.
                    if self.Trait.cellid:
                        pass
                    else:
                        self.cursor.execute("SELECT DataId, h2 from ProbeSetXRef WHERE DataId = %d" % self.Trait.mysqlid)
                        dataid, heritability = self.cursor.fetchone()
                        if heritability:
                            tbl2.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("%s" % heritability, nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
                        else:
                            tbl2.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("NaN", nowrap="yes",align="center", Class="fs13 b1 cbw c222")))

                    # Lei Yan
                    # 2008/12/19

                TDStatis.append(tbl2)

                plotHeight = 220
                plotWidth = 120
                xLeftOffset = 60
                xRightOffset = 25
                yTopOffset = 20
                yBottomOffset = 53

                canvasHeight = plotHeight + yTopOffset + yBottomOffset
                canvasWidth = plotWidth + xLeftOffset + xRightOffset
                canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight))
                XXX = [('', InformData[:])]

                Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait")
                filename= webqtlUtil.genRandStr("Box_")
                canvas.save(webqtlConfig.IMGDIR+filename, format='gif')
                img=HT.Image('/image/'+filename+'.gif',border=0)

                #supertable2.append(HT.TR(HT.TD(staIntro1, colspan=3 )))
                tb = HT.TableLite(border=0, cellspacing=0, cellpadding=0)
                tb.append(HT.TR(HT.TD(img, align="left", style="border: 1px solid #999999; padding:0px;")))
                supertable2.append(HT.TR(TDStatis, HT.TD(tb)))

                dataXZ = vals[:]
                tvals = []
                tnames = []
                tvars = []
                for i in range(len(dataXZ)):
                    tvals.append(dataXZ[i][1])
                    tnames.append(webqtlUtil.genShortStrainName(fd, dataXZ[i][0]))
                    tvars.append(dataXZ[i][2])
                nnStrain = len(tnames)

                sLabel = 1

                ###determine bar width and space width
                if nnStrain < 20:
                    sw = 4
                elif nnStrain < 40:
                    sw = 3
                else:
                    sw = 2

                ### 700 is the default plot width minus Xoffsets for 40 strains
                defaultWidth = 650
                if nnStrain > 40:
                    defaultWidth += (nnStrain-40)*10
                defaultOffset = 100
                bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain)
                if bw < 10:
                    bw = 10

                plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset
                plotHeight = 500
                #print [plotWidth, plotHeight, bw, sw, nnStrain]
                c = pid.PILCanvas(size=(plotWidth,plotHeight))
                Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title='%s by Case (sorted by name)' % self.identification, sLabel = sLabel, barSpace = sw)

                filename= webqtlUtil.genRandStr("Bar_")
                c.save(webqtlConfig.IMGDIR+filename, format='gif')
                img0=HT.Image('/image/'+filename+'.gif',border=0)

                dataXZ = vals[:]
                dataXZ.sort(self.cmpValue)
                tvals = []
                tnames = []
                tvars = []
                for i in range(len(dataXZ)):
                    tvals.append(dataXZ[i][1])
                    tnames.append(webqtlUtil.genShortStrainName(fd, dataXZ[i][0]))
                    tvars.append(dataXZ[i][2])

                c = pid.PILCanvas(size=(plotWidth,plotHeight))
                Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title='%s by Case (ranked)' % self.identification, sLabel = sLabel, barSpace = sw)

                filename= webqtlUtil.genRandStr("Bar_")
                c.save(webqtlConfig.IMGDIR+filename, format='gif')
                img1=HT.Image('/image/'+filename+'.gif',border=0)

                # Lei Yan
                # 05/18/2009
                # report

                title = HT.Paragraph('REPORT on the variation of Shh (or PCA Composite Trait XXXX) (sonic hedgehog) in the (insert Data set name) of (insert Species informal name, e.g., Mouse, Rat, Human, Barley, Arabidopsis)', Class="title")
                header = HT.Paragraph('''This report was generated by GeneNetwork on May 11, 2009, at 11.20 AM using the Basic Statistics module (v 1.0) and data from the Hippocampus Consortium M430v2 (Jun06) PDNN data set. For more details and updates on this data set please link to URL:get Basic Statistics''')
                hr = HT.HR()
                p1 = HT.Paragraph('''Trait values for Shh were taken from the (insert Database name, Hippocampus Consortium M430v2 (Jun06) PDNN). GeneNetwork contains data for NN (e.g., 99) cases. In general, data are averages for each case. A summary of mean, median, and the range of these data are provided in Table 1 and in the box plot (Figure 1). Data for individual cases are provided in Figure 2A and 2B, often with error bars (SEM). ''')
                p2 = HT.Paragraph('''Trait values for Shh range 5.1-fold: from a low of 8.2 (please round value) in 129S1/SvImJ to a high of 10.6 (please round value) in BXD9.  The interquartile range (the difference between values closest to the 25% and 75% levels) is a more modest 1.8-fold. The mean value is XX. ''')
                t1 = HT.Paragraph('''Table 1.  Summary of Shh data from the Hippocampus Consortium M430v2 (june06) PDNN data set''')
                f1 = HT.Paragraph('''Figure 1. ''')
                f1.append(HT.Href(text="Box plot", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs14"))
                f1.append(HT.Text(''' of Shh data from the Hippocampus Consortium M430v2 (june06) PDNN data set'''))
                f2A = HT.Paragraph('''Figure 2A: Bar chart of Shh data ordered by case from the Hippocampus Consortium M430v2 (june06) PDNN data set''')
                f2B = HT.Paragraph('''Figure 2B: Bar chart of Shh values ordered by from the Hippocampus Consortium M430v2 (june06) PDNN data set''')
                TD_LR.append(HT.Blockquote(title, HT.P(), header, hr, p1, HT.P(), p2, HT.P(), supertable2, t1, f1, HT.P(), img0, f2A, HT.P(), img1, f2B))
                self.dict['body'] = str(TD_LR)
            else:
                heading = "Basic Statistics"
                detail = ['Fewer than %d case data were entered for %s data set. No statitical analysis has been attempted.' % (self.plotMinInformative, fd.RISet)]
                self.error(heading=heading,detail=detail)
                return
        else:
            heading = "Basic Statistics"
            detail = ['Empty data set, please check your data.']
            self.error(heading=heading,detail=detail)
            return

    def traitInfo(self, fd, specialStrains = None):
        species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet)
        heading2 = HT.Paragraph(HT.Strong('Population: '), "%s %s" % (species.title(), fd.RISet) , HT.BR())
        if self.Trait:
            trait_url = HT.Href(text=self.Trait.name, url = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + \
                            "?FormID=showDatabase&incparentsf1=1&database=%s&ProbeSetID=%s" % (self.Trait.db.name, self.Trait.name), \
                            target='_blank', Class="fs13 fwn")
            heading2.append(HT.Strong("Database: "),
                    HT.Href(text=self.Trait.db.fullname, url = webqtlConfig.INFOPAGEHREF % self.Trait.db.name ,
                            target='_blank',Class="fs13 fwn"),HT.BR())
            if self.Trait.db.type == 'ProbeSet':
                heading2.append(HT.Strong('Trait ID: '), trait_url, HT.BR(),
                        HT.Strong("Gene Symbol: "), HT.Italic('%s' % self.Trait.symbol,id="green"),HT.BR())
                if self.Trait.chr and self.Trait.mb:
                    heading2.append(HT.Strong("Location: "), 'Chr %s @ %s Mb' % (self.Trait.chr, self.Trait.mb))
            elif self.Trait.db.type == 'Geno':
                heading2.append(HT.Strong('Locus : '), trait_url, HT.BR())
                #heading2.append(HT.Strong("Gene Symbol: "), HT.Italic('%s' % self.Trait.Symbol,id="green"),HT.BR())
                if self.Trait.chr and self.Trait.mb:
                    heading2.append(HT.Strong("Location: "), 'Chr %s @ %s Mb' % (self.Trait.chr, self.Trait.mb))
            elif self.Trait.db.type == 'Publish':
                heading2.append(HT.Strong('Record ID: '), trait_url, HT.BR())
                heading2.append(HT.Strong('Phenotype: '), self.Trait.phenotype, HT.BR())
                heading2.append(HT.Strong('Author: '), self.Trait.authors, HT.BR())
            elif self.Trait.db.type == 'Temp':
                heading2.append(HT.Strong('Description: '), self.Trait.description, HT.BR())
                #heading2.append(HT.Strong('Author: '), self.Trait.authors, HT.BR())
            else:
                pass
        else:
            heading2.append(HT.Strong("Trait Name: "), fd.identification)

        if specialStrains:
            mdpform = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='MDP_Form',submit=HT.Input(type='hidden'))
            mdphddn = {'FormID':'dataEditing', 'submitID':'basicStatistics','RISet':fd.RISet, "allstrainlist":string.join(fd.allstrainlist, " "), "ptype":self.plotType, 'identification':fd.identification, "incparentsf1":1}
            if self.fullname:  mdphddn['fullname'] = self.fullname
            webqtlUtil.exportData(mdphddn, fd.allTraitData)
            for key in mdphddn.keys():
                mdpform.append(HT.Input(name=key, value=mdphddn[key], type='hidden'))
            btn0 = HT.Input(type='button' ,name='',value='All Cases',onClick="this.form.ptype.value=0;submit();", Class="button")
            btn1 = HT.Input(type='button' ,name='',value='%s Only' % fd.RISet,onClick="this.form.ptype.value=1;submit();", Class="button")
            btn2 = HT.Input(type='button' ,name='',value='MDP Only', onClick="this.form.ptype.value=2;submit();", Class="button")
            mdpform.append(btn0)
            mdpform.append(btn1)
            mdpform.append(btn2)
            heading2.append(HT.P(), mdpform)

        return HT.Span(heading2)

    def calSD(self,var):
        try:
            return sqrt(abs(var))
        except:
            return None


    def cmpValue(self,A,B):
        try:
            if A[1] < B[1]:
                return -1
            elif A[1] == B[1]:
                return 0
            else:
                return 1
        except:
            return 0