aboutsummaryrefslogtreecommitdiff
path: root/web/webqtl/correlationMatrix/CorrelationMatrixPage.py
blob: a01111f52686981b37f564dbb0c8c3eac9003c8f (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by NL 2011/02/14

import os
import string
from htmlgen import HTMLgen2 as HT
import sys
import time
import numarray
import numarray.linear_algebra as la
import piddle as pid
import math

from base.templatePage import templatePage
from base import webqtlConfig
from base.webqtlTrait import webqtlTrait
from utility import webqtlUtil
from utility import Plot



# XZ, 09/09/2008: After adding several traits to collection, click "Correlation Matrix" button,
# XZ, 09/09/2008: This class will generate what you see.
#########################################
#      Correlation Matrix Page
#########################################

class CorrelationMatrixPage(templatePage):

    def __init__(self,fd,InputData=None):

        templatePage.__init__(self, fd)

        self.dict['title'] = 'Correlation Matrix'

        if not self.openMysql():
            return
            
        if not fd.genotype:
            fd.readGenotype()
            fd.strainlist = fd.f1list + fd.strainlist
            
        #self.searchResult = fd.formdata.getvalue('searchResult')
        self.oldSearchResult = fd.formdata.getvalue('oldSearchResult')
        
        if self.oldSearchResult:
            try:
                self.searchResult = fd.formdata.getvalue('oldSearchResult')
            except:
            	self.searchResult = fd.formdata.getvalue('searchResult')
        
        else:
        	self.searchResult = fd.formdata.getvalue('searchResult')
        
        if not self.searchResult:
            heading = 'Correlation Matrix'
            detail = ['You need to select at least two traits in order to generate correlation matrix.']
            self.error(heading=heading,detail=detail)
            return
        if type("1") == type(self.searchResult):
            self.searchResult = [self.searchResult]
        
        if self.searchResult:
            #testvals,names,dbInfos = self.getAllSearchResult(fd,self.searchResult)
            if len(self.searchResult) > webqtlConfig.MAXCORR:
                heading = 'Correlation Matrix'
                detail = ['In order to display Correlation Matrix properly, Do not select more than %d traits for Correlation Matrix.' % webqtlConfig.MAXCORR]
                self.error(heading=heading,detail=detail)
                return

            #XZ, 7/22/2009: this block is not necessary
            #elif len(self.searchResult) > 40:
            #    noPCA = 1
            #else:
            #    noPCA = 0
    
            traitList = []
            traitDataList = []
            for item in self.searchResult:
                thisTrait = webqtlTrait(fullname=item, cursor=self.cursor)
                thisTrait.retrieveInfo()
                thisTrait.retrieveData(fd.strainlist)
                traitList.append(thisTrait)
                traitDataList.append(thisTrait.exportData(fd.strainlist))
                
        else:
            heading = 'Correlation Matrix'
            detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data FROM database.',color='black')]
            self.error(heading=heading,detail=detail)
            return

        NNN = len(traitList)
        
        if NNN == 0:
            heading = "Correlation Matrix"
            detail = ['No trait was selected for %s data set. No matrix generated.' % self.data.RISet]
            self.error(heading=heading,detail=detail)
            return
        elif NNN < 2:
            heading = 'Correlation Matrix'
            detail = ['You need to select at least two traits in order to generate correlation matrix.']
            self.error(heading=heading,detail=detail)
            return
        else:
        	
        	
        	
            corArray = [([0] * (NNN+1))[:] for i in range(NNN+1)]
            pearsonArray = [([0] * (NNN))[:] for i in range(NNN)]
            spearmanArray = [([0] * (NNN))[:] for i in range(NNN)]
            corArray[0][0] = 'Correlation'
            TD_LR = HT.TD(colspan=2,width="100%",bgColor='#eeeeee')
            form = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
            hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':'_',
            'CellID':'_','ProbeSetID2':'_','database2':'_','CellID2':'_',
            'newNames':fd.formdata.getvalue("newNames", "_"), 
            'RISet':fd.RISet,'ShowStrains':'ON','ShowLine':'ON', 'rankOrder':'_', 
            "allstrainlist":string.join(fd.strainlist, " "), 'traitList':string.join(self.searchResult, "\t")}
            if fd.incparentsf1:
                hddn['incparentsf1']='ON'
            	    
            for key in hddn.keys():
                form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
           
            for item in self.searchResult:
            	form.append(HT.Input(name='oldSearchResult', value=str(item), type='hidden'))
            
            traiturls = []
            traiturls2 = []
            shortNames = []
            verboseNames = []
            verboseNames2 = []
            verboseNames3 = []
            abbreviation = ''
            
            #dbInfo.ProbeSetID = ProbeSetID
            #dbInfo.CellID = CellID
            for i, thisTrait in enumerate(traitList):
                _url = "javascript:showDatabase2('%s','%s','%s');" % (thisTrait.db.name, thisTrait.name, thisTrait.cellid)
                #_text = 'Trait%d: ' % (i+1)+str(thisTrait)
                _text = 'Trait %d: ' % (i+1)+thisTrait.displayName()
                                
                if thisTrait.db.type == 'Geno':
                    _shortName = 'Genotype'
                    abbreviation = 'Genotype'
                    _verboseName = 'Locus %s' % (thisTrait.name)
                    _verboseName2 = 'Chr %s @ %s Mb' % (thisTrait.chr, '%2.3f' % thisTrait.mb)
                    _verboseName3 = ''
                elif thisTrait.db.type == 'Publish':
                    if thisTrait.post_publication_abbreviation:
                        AbbreviationString = thisTrait.post_publication_abbreviation
                    else:
                        AbbreviationString = ''
                    if thisTrait.confidential:
                        if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
                            if thisTrait.pre_publication_abbreviation:
                                AbbreviationString = thisTrait.pre_publication_abbreviation
                            else:
                                AbbreviationString = ''
                    _shortName = 'Phenotype: %s' % (AbbreviationString)  
                    _verboseName2 = ''
                    _verboseName3 = ''
                    if thisTrait.pubmed_id:
                        _verboseName = 'PubMed %d: ' % thisTrait.pubmed_id
                    else: 
                        _verboseName = 'Unpublished '
                    _verboseName += 'RecordID/%s' % (thisTrait.name)
                    PhenotypeString = thisTrait.post_publication_description
                    if thisTrait.confidential:
                        if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
                            PhenotypeString = thisTrait.pre_publication_description
                    _verboseName2 = 'Phenotype: %s' % (PhenotypeString)
                    if thisTrait.authors:
                        a1 = string.split(thisTrait.authors,',')[0]
                        while a1[0] == '"' or a1[0] == "'" :
                            a1 = a1[1:]
                            _verboseName += ' by '
                            _verboseName += HT.Italic('%s, and colleagues' % (a1))
                elif thisTrait.db.type == 'Temp':
                    abbreviation = ''
                    _shortName = thisTrait.name
                    if thisTrait.description:
                        _verboseName = thisTrait.description
                    else:
                        _verboseName = 'Temp'
                    _verboseName2 = ''
                    _verboseName3 = ''
                else:
                    abbreviation = thisTrait.symbol
                    _shortName = 'Symbol: %s ' % thisTrait.symbol
                    _verboseName = thisTrait.symbol
                    _verboseName2 = ''
                    _verboseName3 = ''
                    if thisTrait.chr and thisTrait.mb:
                        _verboseName += ' on Chr %s @ %s Mb' % (thisTrait.chr,thisTrait.mb)
                    if thisTrait.description:
                        _verboseName2 = '%s' % (thisTrait.description)
                    if thisTrait.probe_target_description:
                        _verboseName3 = '%s' % (thisTrait.probe_target_description)         
                                
                cururl = HT.Href(text=_text, url=_url,Class='fs12') 
                cururl2 = HT.Href(text='Trait%d' % (i+1),url=_url,Class='fs12')
                traiturls.append(cururl)
                traiturls2.append(cururl2)
                shortName = HT.Div(id="shortName_" + str(i), style="display:none")
                shortName.append(_shortName)
                shortNames.append(shortName)
                verboseName = HT.Div(id="verboseName_" + str(i), style="display:none")
                verboseName.append(_verboseName)
                verboseNames.append(verboseName)
                verboseName2 = HT.Div(id="verboseName2_" + str(i), style="display:none")
                verboseName2.append(_verboseName2)
                verboseNames2.append(verboseName2)
                verboseName3 = HT.Div(id="verboseName3_" + str(i), style="display:none")
                verboseName3.append(_verboseName3)
                verboseNames3.append(verboseName3)
                    

                                
                corArray[i+1][0] = 'Trait%d: ' % (i+1)+str(thisTrait) + '/' + str(thisTrait) + ': ' + abbreviation + '/' + str(thisTrait) + ': ' + str(_verboseName) + ' : ' + str(_verboseName2) + ' : ' + str(_verboseName3)
                corArray[0][i+1] = 'Trait%d: ' % (i+1)+str(thisTrait)
                
            corMatrixHeading = HT.Paragraph('Correlation Matrix', Class="title")
            
            tbl = HT.TableLite(Class="collap", border=0, cellspacing=1, 
                cellpadding=5, width='100%')
            row1 = HT.TR(HT.TD(Class="fs14 fwb ffl b1 cw cbrb"),
                HT.TD('Spearman Rank Correlation (rho)', Class="fs14 fwb ffl b1 cw cbrb", colspan= NNN+1,align="center")
                )
            row2 = HT.TR(
                HT.TD("P e a r s o n &nbsp;&nbsp;&nbsp; r", rowspan= NNN+1,Class="fs14 fwb ffl b1 cw cbrb", width=10,align="center"),
                HT.TD(Class="b1", width=300))
            for i in range(NNN):
                row2.append(HT.TD(traiturls2[i], Class="b1", align="center"))
            tbl.append(row1,row2)

            nOverlapTrait =9999            
            nnCorr = len(fd.strainlist)
            for i, thisTrait in enumerate(traitList):
                newrow = HT.TR()
                newrow.append(HT.TD(traiturls[i], shortNames[i], verboseNames[i], verboseNames2[i], 
                                    verboseNames3[i], Class="b1"))
                names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid]
                for j, thisTrait2 in enumerate(traitList):
                    names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid]
                    if j < i:
                        corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr)
                        
                        rank = fd.formdata.getvalue("rankOrder", "0")
                        
                        if nOverlap < nOverlapTrait:
                            nOverlapTrait = nOverlap
                        if corr > 0.7:
                            fontcolor="red"
                        elif corr > 0.5:
                            fontcolor="#FF6600"
                        elif corr < -0.7:
                            fontcolor="blue"
                        elif corr < -0.5:
                            fontcolor="#009900"
                        else:
                            fontcolor ="#000000"

                        pearsonArray[i][j] = corr
                        pearsonArray[j][i] = corr
                        if corr!= 0.0:
                            corArray[i+1][j+1] = '%2.3f/%d' % (corr,nOverlap)
                            thisurl = HT.Href(text=HT.Font('%2.3f'% corr,HT.BR(),'%d' % nOverlap ,color=fontcolor, Class="fs11 fwn"),url = "javascript:showCorrelationPlot2(db='%s',ProbeSetID='%s',CellID='%s',db2='%s',ProbeSetID2='%s',CellID2='%s',rank='%s')" % (names1[0], names1[1], names1[2], names2[0], names2[1], names2[2], rank))
                        else:
                            corArray[i+1][j+1] = '---/%d' % nOverlap
                            thisurl = HT.Font('---',HT.BR(), '%d' % nOverlap)
                        
                        newrow.append(HT.TD(thisurl,Class="b1",NOWRAP="ON",align="middle"))
                    elif j == i:
                        corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr)
                        pearsonArray[i][j] = 1.0
                        spearmanArray[i][j] = 1.0
                        corArray[i+1][j+1] = '%2.3f/%d' % (corr,nOverlap)
                        nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr)[1]
                        newrow.append(HT.TD(HT.Href(text=HT.Font(HT.Italic("n"),HT.BR(),str(nOverlap),Class="fs11 fwn b1",align="center", color="000000"), url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name, thisTrait.name, thisTrait.cellid)), bgColor='#cccccc', align="center", Class="b1", NOWRAP="ON"))
                    else:       
                        corr,nOverlap = webqtlUtil.calCorrelationRank(traitDataList[i],traitDataList[j],nnCorr)
                        
                        rank = fd.formdata.getvalue("rankOrder", "1")
                        
                        if corr > 0.7:
                            fontcolor="red"
                        elif corr > 0.5:
                            fontcolor="#FF6600"
                        elif corr < -0.7:
                            fontcolor="blue"
                        elif corr < -0.5:
                            fontcolor="#009900"
                        else:
                            fontcolor ="#000000"
                        spearmanArray[i][j] = corr
                        spearmanArray[j][i] = corr
                        if corr!= 0.0:
                            corArray[i+1][j+1] = '%2.3f/%d' % (corr,nOverlap)
                            thisurl = HT.Href(text=HT.Font('%2.3f'% corr,HT.BR(),'%d' % nOverlap ,color=fontcolor, Class="fs11 fwn"),url = "javascript:showCorrelationPlot2(db='%s',ProbeSetID='%s',CellID='%s',db2='%s',ProbeSetID2='%s',CellID2='%s',rank='%s')" % (names1[0], names1[1], names1[2], names2[0], names2[1], names2[2], rank))
                        else:
                            corArray[i+1][j+1] = '---/%d' % nOverlap
                            thisurl = HT.Span('---',HT.BR(), '%d' % nOverlap, Class="fs11 fwn")
                        newrow.append(HT.TD(thisurl,Class="b1", NOWRAP="ON",align="middle"))
                tbl.append(newrow)
                
            info = HT.Blockquote('Lower left cells list Pearson product-moment correlations; upper right cells list Spearman rank order correlations. Each cell also contains the n of cases. Values higher than 0.7 are displayed in ',HT.Font('red', color='red'),'; those between 0.5 and 0.7 in  ',HT.Font('orange', color='#FF6600'),'; Values lower than -0.7 are in ',HT.Font('blue', color='blue'),'; between -0.5 and -0.7 in ',HT.Font('green', color='#009900'),'. Select any cell to generate a scatter plot. Select trait labels for more information.', Class="fs13 fwn")
            
            exportbutton = HT.Input(type='button',  name='export', value='Export', onClick="exportText(allCorrelations);",Class="button")
            shortButton = HT.Input(type='button' ,name='dispShort',value=' Short Labels ', onClick="displayShortName();",Class="button")
            verboseButton = HT.Input(type='button' ,name='dispVerbose',value=' Long Labels ', onClick="displayVerboseName();", Class="button")
            form.append(HT.Blockquote(tbl,HT.P(),shortButton,verboseButton,exportbutton))
            TD_LR.append(corMatrixHeading,info,form,HT.P())

            #if noPCA:
            #    TD_LR.append(HT.Blockquote('No PCA is computed if more than 32 traits are selected.'))

            #print corArray
            exportScript = """
                <SCRIPT language=JavaScript>
                var allCorrelations = %s;
                </SCRIPT>

            """
            exportScript = exportScript % str(corArray)
            self.dict['js1'] = exportScript+'<SCRIPT SRC="/javascript/correlationMatrix.js"></SCRIPT><BR>'
            self.dict['body'] = str(TD_LR)
            
            #don't calculate PCA while number exceed 32
            #if noPCA:
            #    return

            #XZ, 7/22/2009: deal with PCA stuff
            #Only for Array Data
            
            if NNN > 2:
    
                traitname = map(lambda X:str(X.name), traitList)
                
                #generate eigenvalues
                
                # import sys
                sys.argv=[" "]
                # import numarray
                # import numarray.linear_algebra as la
                #spearmanEigen = eigenvectors(array(spearmanArray))
                pearsonEigen = la.eigenvectors(numarray.array(pearsonArray))
                #spearmanEigenValue,spearmanEigenVectors = self.sortEigenVectors(spearmanEigen)
                pearsonEigenValue,pearsonEigenVectors = self.sortEigenVectors(pearsonEigen)
		
				
		"""
		for i in range(len(pearsonEigenValue)):
			if type(pearsonEigenValue[i]).__name__ == 'complex':
				pearsonEigenValue[i] = pearsonEigenValue[i].real
		for i in range(len(pearsonEigenVectors)):
			for j in range(len(pearsonEigenVectors[i])):
				if type(pearsonEigenVectors[i][j]).__name__ == 'complex':
					pearsonEigenVectors[i][j] = pearsonEigenVectors[i][j].real
				if type(pearsonEigenVectors[i][j]).__name__ == 'complex':
					pearsonEigenVectors[i][j] = pearsonEigenVectors[i][j].real		      
		"""
        
		if type(pearsonEigenValue[0]).__name__ == 'complex':
		   pass
		else:	
            	   traitHeading = HT.Paragraph('PCA Traits',align='left', Class="title")  
                   
        	   tbl2 = self.calcPCATraits(traitDataList=traitDataList, nnCorr=nnCorr, NNN=NNN, pearsonEigenValue=pearsonEigenValue, 
                                         pearsonEigenVectors=pearsonEigenVectors, form=form, fd=fd)
                   #Buttons on search page
                   #mintmap = HT.Input(type='button' ,name='mintmap',value='Multiple Mapping', onClick="databaseFunc(this.form,'showIntMap');",Class="button")
                   addselect = HT.Input(type='button' ,name='addselect',value='Add to Collection', onClick="addRmvSelection('%s', this.form, 'addToSelection');"  % fd.RISet,Class="button")
                   selectall = HT.Input(type='button' ,name='selectall',value='Select All', onClick="checkAll(this.form);",Class="button")
                   reset = HT.Input(type='reset',name='',value='Select None',Class="button")
                   updateNames = HT.Input(type='button', name='updateNames',value='Update Trait Names', onClick="editPCAName(this.form);", Class="button")
                   chrMenu = HT.Input(type='hidden',name='chromosomes',value='all')
                   
                   """
                   #need to be refined
                   if fd.genotype.Mbmap:
                       scaleMenu = HT.Select(name='scale')
                       scaleMenu.append(tuple(["Genetic Map",'morgan']))
                       scaleMenu.append(tuple(["Physical Map",'physic']))
                   else:
                       scaleMenu = ""
                   """    
                   
                   tbl2.append(HT.TR(HT.TD(HT.P(),chrMenu,updateNames,selectall,reset,addselect,colspan=3)))
        	   form.append(HT.P(),traitHeading,HT.Blockquote(tbl2))
                
                   plotHeading1 = HT.Paragraph('Scree Plot', Class="title") 
                   TD_LR.append(plotHeading1)
                   img1 = self.screePlot(NNN=NNN, pearsonEigenValue=pearsonEigenValue)
    
                   TD_LR.append(HT.Blockquote(img1))
                   
                   plotHeading2 = HT.Paragraph('Factor Loadings Plot', Class="title")
                   TD_LR.append(plotHeading2)
                   img2 = self.factorLoadingsPlot(pearsonEigenVectors=pearsonEigenVectors, traitList=traitList)
                   
                   TD_LR.append(HT.Blockquote(img2))                      

        self.dict['body'] = str(TD_LR)
    
    def screePlot(self, NNN=0, pearsonEigenValue=None):

        c1 = pid.PILCanvas(size=(700,500))
        Plot.plotXY(canvas=c1, dataX=range(1,NNN+1), dataY=pearsonEigenValue, rank=0, labelColor=pid.blue,plotColor=pid.red, symbolColor=pid.blue, XLabel='Factor Number', connectdot=1,YLabel='Percent of Total Variance %', title='Pearson\'s R Scree Plot')
        filename= webqtlUtil.genRandStr("Scree_")
        c1.save(webqtlConfig.IMGDIR+filename, format='gif')
        img=HT.Image('/image/'+filename+'.gif',border=0)
        
        return img
    
    def factorLoadingsPlot(self, pearsonEigenVectors=None, traitList=None):
        
        traitname = map(lambda X:str(X.name), traitList)
        c2 = pid.PILCanvas(size=(700,500))
        Plot.plotXY(c2, pearsonEigenVectors[0],pearsonEigenVectors[1], 0, dataLabel = traitname, labelColor=pid.blue, plotColor=pid.red, symbolColor=pid.blue,XLabel='Factor (1)', connectdot=1, YLabel='Factor (2)', title='Factor Loadings Plot (Pearson)', loadingPlot=1)
        filename= webqtlUtil.genRandStr("FacL_")
        c2.save(webqtlConfig.IMGDIR+filename, format='gif')
        img = HT.Image('/image/'+filename+'.gif',border=0)
     
        return img
    
    def calcPCATraits(self, traitDataList=None, nnCorr=0, NNN=0, pearsonEigenValue=None, pearsonEigenVectors=None, form=None, fd=None):  
       """
       This function currently returns the html to be displayed instead of the traits themselves. Need to fix later.
       """
    
       detailInfo = string.split(self.searchResult[0],':')
    
       self.sameProbeSet = 'yes'
       for item in self.searchResult[1:]:
           detailInfo2 = string.split(item,':')
           if detailInfo[0] != detailInfo2[0] or detailInfo[1] != detailInfo2[1]:
               self.sameProbeSet = None
               break
                
       for item in traitDataList:
           if len(item) != nnCorr:
               return
       infoStrains = []
       infoStrainsPos = []
       dataArray  = [[] for i in range(NNN)]
    
       for i in range(len(traitDataList[0])):
           currentStrain = 1
           for j in range(NNN):
               if not traitDataList[j][i]:
                   currentStrain = 0
                   break
           if currentStrain == 1:
               infoStrains.append(fd.strainlist[i])
               infoStrainsPos.append(i)
               for j in range(NNN): 
                   dataArray[j].append(traitDataList[j][i])

    
       self.cursor.execute('delete Temp, TempData FROM Temp, TempData WHERE Temp.DataId = TempData.Id and UNIX_TIMESTAMP()-UNIX_TIMESTAMP(CreateTime)>%d;' % webqtlConfig.MAXLIFE)

       StrainIds = []
       for item in infoStrains:
           self.cursor.execute('SELECT Strain.Id FROM Strain,StrainXRef, InbredSet WHERE Strain.Name="%s" and Strain.Id = StrainXRef.StrainId and StrainXRef.InbredSetId = InbredSet.Id and InbredSet.Name = "%s"' % (item, fd.RISet))
           StrainIds.append('%d' % self.cursor.fetchone()[0])
    
       """
       #minimal 12 overlapping strains      
       if len(dataArray[0]) < 12:
           form.append(HT.P(),traitHeading,HT.Blockquote(HT.Paragraph('The number of overlapping strains is less than 12, no PCA scores computed.',align='left')))
           self.dict['body'] = str(TD_LR)
           return
       """
       dataArray = self.zScore(dataArray)
       dataArray = numarray.array(dataArray)
       dataArray2 = numarray.dot(pearsonEigenVectors,dataArray)
    
       tbl2 = HT.TableLite(cellSpacing=2,cellPadding=0,border=0, width="100%")
    
       ct0 = time.localtime(time.time())
       ct = time.strftime("%B/%d %H:%M:%S",ct0)
       if self.sameProbeSet:
           newDescription = 'PCA Traits generated at %s from %s' % (ct,detailInfo[1])
       else:
           newDescription = 'PCA Traits generated at %s from traits selected' % ct
    

       j = 1
       self.cursor.execute('SELECT Id  FROM InbredSet WHERE Name = "%s"' % fd.RISet)
       InbredSetId = self.cursor.fetchall()[0][0]
       user_ip = fd.remote_ip
       if fd.formdata.getvalue("newNames"):
           newNames = fd.formdata.getvalue("newNames").split(",")
       else:
       	   newNames = 0
       
       for item in dataArray2:
           if pearsonEigenValue[j-1] < 100.0/NNN:
               break
           
           if (newNames == 0):
               description  = '%s : PC%02d' % (newDescription, j)              
           else:    
               description = '%s : %s' % (newDescription, newNames[j-1])           	   
                  
           self.cursor.execute('SELECT max(id) FROM TempData')
           try:
               DataId = self.cursor.fetchall()[0][0] + 1
           except:
               DataId = 1
           newProbeSetID = webqtlUtil.genRandStr("PCA_Tmp_")
           self.cursor.execute('insert into Temp(Name,description, createtime,DataId,InbredSetId,IP) values(%s,%s,Now(),%s,%s,%s)' ,(newProbeSetID, description, DataId,InbredSetId,user_ip))
        
           k = 0    
           for StrainId in StrainIds:
               self.cursor.execute('insert into TempData(Id, StrainId, value) values(%s,%s,%s)' % (DataId, StrainId, item[k]*(-1.0)))
               k += 1
           setDescription = HT.Div(id="pcaTrait%s" % j)
           descriptionLink = HT.Href(text=description, url="javascript:showDatabase2('Temp','%s','')" % newProbeSetID, Class="fwn")
           descriptionEdit = HT.Input(type='text', value='', name='editName%s' % j)
           
           #onBlur='editPDAName(this.form, %s);' % j
           
           setDescription.append(descriptionLink)
           setDescription.append(descriptionEdit)
           
           traitName = "%s:%s" % ('Temp',newProbeSetID)
           tbl2.append(HT.TR(HT.TD("%d."%j,align="right",valign="top"),HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=traitName),valign="top",width=50),HT.TD(setDescription)))
           j += 1
    
       return tbl2
    
    def zScore(self,dataArray):
        NN = len(dataArray[0])
        if NN < 10:
            return dataArray
        else:
            i = 0
            for data in dataArray:
                N = len(data)
                S = reduce(lambda x,y: x+y, data, 0.)
                SS = reduce(lambda x,y: x+y*y, data, 0.)
                mean = S/N
                var = SS - S*S/N
                stdev = math.sqrt(var/(N-1))
                data2 = map(lambda x:(x-mean)/stdev,data)
                dataArray[i] = data2
                i += 1
            return dataArray
    
    def sortEigenVectors(self,vector):
        try:
            eigenValues = vector[0].tolist()
            eigenVectors = vector[1].tolist()
            combines = []
            i = 0
            for item in eigenValues:
                combines.append([eigenValues[i],eigenVectors[i]])
                i += 1
            combines.sort(webqtlUtil.cmpEigenValue)
            A = []
            B = []
            for item in combines:
                A.append(item[0])
                B.append(item[1])
            sum = reduce(lambda x,y: x+y, A, 0.0)
            A = map(lambda x:x*100.0/sum, A) 
            return [A,B]
        except:
            return []