aboutsummaryrefslogtreecommitdiff
path: root/web/webqtl/correlation/correlationFunction.py
blob: cc19f54ebfb6e949a17f7c915d5f26a26adf903d (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by NL 2011/03/23


import math
import rpy2.robjects
import pp
import string

from utility import webqtlUtil
from base.webqtlTrait import webqtlTrait
from dbFunction import webqtlDatabaseFunction



#XZ: The input 'controls' is String. It contains the full name of control traits.
#XZ: The input variable 'strainlst' is List. It contains the strain names of primary trait.
#XZ: The returned tcstrains is the list of list [[],[]...]. So are tcvals and tcvars. The last returned parameter is list of numbers.
#XZ, 03/29/2010: For each returned control trait, there is no None value in it.
def controlStrains(controls, strainlst):

    controls = controls.split(',')

    cvals = {}
    for oneTraitName in controls:
        oneTrait = webqtlTrait(fullname=oneTraitName, cursor=webqtlDatabaseFunction.getCursor() )
        oneTrait.retrieveData()
        cvals[oneTraitName] = oneTrait.data

    tcstrains = []
    tcvals = []
    tcvars = []

    for oneTraitName in controls:
        strains = []
        vals = []
        vars = []

        for _strain in strainlst:
            if cvals[oneTraitName].has_key(_strain):
                _val = cvals[oneTraitName][_strain].val
                if _val != None:
                    strains.append(_strain)
                    vals.append(_val)
                    vars.append(None)

        tcstrains.append(strains)
        tcvals.append(vals)
        tcvars.append(vars)

    return tcstrains, tcvals, tcvars, [len(x) for x in tcstrains]



#XZ, 03/29/2010: After execution of functon "controlStrains" and "fixStrains", primary trait and control traits have the same strains and in the same order. There is no 'None' value in them.
def fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars):
    """Corrects strains, vals, and vars so that all contrain only those strains common
    to the reference trait and all control traits."""

    def dictify(strains,vals,vars):
        subdict = {}
        for i in xrange(len(strains)):
            subdict[strains[i]] = (vals[i],vars[i])
        return subdict

    #XZ: The 'dicts' is a list of dictionary. The first element is the dictionary of reference trait. The rest elements are for control traits.
    dicts = []
    dicts.append(dictify(_strains,_vals,_vars))

    nCstrains = len(_controlstrains)
    for i in xrange(nCstrains):
        dicts.append(dictify(_controlstrains[i],_controlvals[i],_controlvars[i]))

    _newstrains = []
    _vals = []
    _vars = []
    _controlvals = [[] for x in xrange(nCstrains)]
    _controlvars = [[] for x in xrange(nCstrains)]

    for strain in _strains:
        inall = True
        for d in dicts:
            if strain not in d: 
                inall = False
                break
        if inall:
            _newstrains.append(strain)
            _vals.append(dicts[0][strain][0])
            _vars.append(dicts[0][strain][1])
            for i in xrange(nCstrains):
                _controlvals[i].append(dicts[i+1][strain][0])
                _controlvars[i].append(dicts[i+1][strain][1])

    return _newstrains,  _vals, _controlvals, _vars, _controlvars


#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
#else, the returned list has two elements of control trait name.
def findIdenticalControlTraits ( controlVals, controlNames ):
    nameOfIdenticalTraits = []

    controlTraitNumber = len(controlVals)

    if controlTraitNumber > 1:

        #XZ: reset the precision of values and convert to string type
        for oneTraitVal in controlVals:
            for oneStrainVal in oneTraitVal:
                oneStrainVal = '%.3f' % oneStrainVal                

        for i, oneTraitVal in enumerate( controlVals ):
            for j in range(i+1, controlTraitNumber):
                if oneTraitVal == controlVals[j]:
                    nameOfIdenticalTraits.append(controlNames[i])
                    nameOfIdenticalTraits.append(controlNames[j])

    return nameOfIdenticalTraits

#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
#else, the returned list has two elements of control trait name.
#primaryVal is of list type. It contains value of primary trait.
#primaryName is of string type.
#controlVals is of list type. Each element is list too. Each element contain value of one control trait.
#controlNames is of list type.
def findIdenticalTraits (primaryVal, primaryName, controlVals, controlNames ):
    nameOfIdenticalTraits = []

    #XZ: reset the precision of values and convert to string type
    for oneStrainVal in primaryVal:
        oneStrainVal = '%.3f' % oneStrainVal

    for oneTraitVal in controlVals:
        for oneStrainVal in oneTraitVal:
            oneStrainVal = '%.3f' % oneStrainVal

    controlTraitNumber = len(controlVals)

    if controlTraitNumber > 1:
        for i, oneTraitVal in enumerate( controlVals ):
            for j in range(i+1, controlTraitNumber):
                if oneTraitVal == controlVals[j]:
                    nameOfIdenticalTraits.append(controlNames[i])
                    nameOfIdenticalTraits.append(controlNames[j])
                    break

    if len(nameOfIdenticalTraits) == 0:
        for i, oneTraitVal in enumerate( controlVals ):
            if primaryVal == oneTraitVal:
                nameOfIdenticalTraits.append(primaryName)
                nameOfIdenticalTraits.append(controlNames[i])
                break

    return nameOfIdenticalTraits



#XZ, 03/29/2010: The strains in primaryVal, controlVals, targetVals must be of the same number and in same order.
#XZ: No value in primaryVal and controlVals could be None.

def determinePartialsByR (primaryVal, controlVals, targetVals, targetNames, method='p'):

    def compute_partial ( primaryVal, controlVals, targetVals, targetNames, method ):

        rpy2.robjects.r("""
pcor.test <- function(x,y,z,use="mat",method="p",na.rm=T){
        # The partial correlation coefficient between x and y given z
        #
        # pcor.test is free and comes with ABSOLUTELY NO WARRANTY.
        #
        # x and y should be vectors
        #
        # z can be either a vector or a matrix
        #
        # use: There are two methods to calculate the partial correlation coefficient.
        #        One is by using variance-covariance matrix ("mat") and the other is by using recursive formula ("rec").
        #        Default is "mat".
        #
        # method: There are three ways to calculate the correlation coefficient,
        #           which are Pearson's ("p"), Spearman's ("s"), and Kendall's ("k") methods.
        #           The last two methods which are Spearman's and Kendall's coefficient are based on the non-parametric analysis.
        #           Default is "p".
        #
        # na.rm: If na.rm is T, then all the missing samples are deleted from the whole dataset, which is (x,y,z).
        #        If not, the missing samples will be removed just when the correlation coefficient is calculated.
        #          However, the number of samples for the p-value is the number of samples after removing
        #          all the missing samples from the whole dataset.
        #          Default is "T".

        x <- c(x)
        y <- c(y)
        z <- as.data.frame(z)

        if(use == "mat"){
                p.use <- "Var-Cov matrix"
                pcor = pcor.mat(x,y,z,method=method,na.rm=na.rm)
        }else if(use == "rec"){
                p.use <- "Recursive formula"
                pcor = pcor.rec(x,y,z,method=method,na.rm=na.rm)
        }else{
                stop("use should be either rec or mat!\n")
        }

        # print the method
        if(gregexpr("p",method)[[1]][1] == 1){
                p.method <- "Pearson"
        }else if(gregexpr("s",method)[[1]][1] == 1){
                p.method <- "Spearman"
        }else if(gregexpr("k",method)[[1]][1] == 1){
                p.method <- "Kendall"
        }else{
                stop("method should be pearson or spearman or kendall!\n")
        }

        # sample number
        n <- dim(na.omit(data.frame(x,y,z)))[1]

        # given variables' number
        gn <- dim(z)[2]

        # p-value
        if(p.method == "Kendall"){
                statistic <- pcor/sqrt(2*(2*(n-gn)+5)/(9*(n-gn)*(n-1-gn)))
                p.value <- 2*pnorm(-abs(statistic))

        }else{
                statistic <- pcor*sqrt((n-2-gn)/(1-pcor^2))
                p.value <- 2*pnorm(-abs(statistic))
        }

        data.frame(estimate=pcor,p.value=p.value,statistic=statistic,n=n,gn=gn,Method=p.method,Use=p.use)
}

# By using var-cov matrix
pcor.mat <- function(x,y,z,method="p",na.rm=T){

        x <- c(x)
        y <- c(y)
        z <- as.data.frame(z)

        if(dim(z)[2] == 0){
                stop("There should be given data\n")
        }

        data <- data.frame(x,y,z)

        if(na.rm == T){
                data = na.omit(data)
        }

        xdata <- na.omit(data.frame(data[,c(1,2)]))
        Sxx <- cov(xdata,xdata,m=method)

        xzdata <- na.omit(data)
        xdata <- data.frame(xzdata[,c(1,2)])
        zdata <- data.frame(xzdata[,-c(1,2)])
        Sxz <- cov(xdata,zdata,m=method)

        zdata <- na.omit(data.frame(data[,-c(1,2)]))
        Szz <- cov(zdata,zdata,m=method)

        # is Szz positive definite?
        zz.ev <- eigen(Szz)$values
        if(min(zz.ev)[1]<0){
                stop("\'Szz\' is not positive definite!\n")
        }

        # partial correlation
        Sxx.z <- Sxx - Sxz %*% solve(Szz) %*% t(Sxz)

        rxx.z <- cov2cor(Sxx.z)[1,2]

        rxx.z
}

# By using recursive formula
pcor.rec <- function(x,y,z,method="p",na.rm=T){
        #

        x <- c(x)
        y <- c(y)
        z <- as.data.frame(z)

        if(dim(z)[2] == 0){
                stop("There should be given data\n")
        }

        data <- data.frame(x,y,z)

        if(na.rm == T){
                data = na.omit(data)
        }

        # recursive formula
        if(dim(z)[2] == 1){
                tdata <- na.omit(data.frame(data[,1],data[,2]))
                rxy <- cor(tdata[,1],tdata[,2],m=method)

                tdata <- na.omit(data.frame(data[,1],data[,-c(1,2)]))
                rxz <- cor(tdata[,1],tdata[,2],m=method)

                tdata <- na.omit(data.frame(data[,2],data[,-c(1,2)]))
                ryz <- cor(tdata[,1],tdata[,2],m=method)

                rxy.z <- (rxy - rxz*ryz)/( sqrt(1-rxz^2)*sqrt(1-ryz^2) )

                return(rxy.z)
        }else{
                x <- c(data[,1])
                y <- c(data[,2])
                z0 <- c(data[,3])
                zc <- as.data.frame(data[,-c(1,2,3)])

                rxy.zc <- pcor.rec(x,y,zc,method=method,na.rm=na.rm)
                rxz0.zc <- pcor.rec(x,z0,zc,method=method,na.rm=na.rm)
                ryz0.zc <- pcor.rec(y,z0,zc,method=method,na.rm=na.rm)

                rxy.z <- (rxy.zc - rxz0.zc*ryz0.zc)/( sqrt(1-rxz0.zc^2)*sqrt(1-ryz0.zc^2) )
                return(rxy.z)
        }
}
""")

        R_pcorr_function = rpy2.robjects.r['pcor.test']
        R_corr_test = rpy2.robjects.r['cor.test']

        primary = rpy2.robjects.FloatVector(range(len(primaryVal)))
        for i in range(len(primaryVal)):
            primary[i] = primaryVal[i]

        control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(controlVals[0])) ), ncol=len(controlVals))
        for i in range(len(controlVals)):
            for j in range(len(controlVals[0])):
                control[i*len(controlVals[0]) + j] = controlVals[i][j]

        allcorrelations = []

        for targetIndex, oneTargetVals in enumerate(targetVals):

            this_primary = None
            this_control = None
            this_target = None

            if None in oneTargetVals:

                goodIndex = []
                for i in range(len(oneTargetVals)):
                    if oneTargetVals[i] != None:
                        goodIndex.append(i)

                this_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
                for i in range(len(goodIndex)):
                    this_primary[i] = primaryVal[goodIndex[i]]

                this_control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(goodIndex)) ), ncol=len(controlVals))
                for i in range(len(controlVals)):
                    for j in range(len(goodIndex)):
                        this_control[i*len(goodIndex) + j] = controlVals[i][goodIndex[j]]

                this_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
                for i in range(len(goodIndex)):
                    this_target[i] = oneTargetVals[goodIndex[i]]

            else:
                this_primary = primary
                this_control = control
                this_target = rpy2.robjects.FloatVector(range(len(oneTargetVals)))
                for i in range(len(oneTargetVals)):
                    this_target[i] = oneTargetVals[i]

            one_name = targetNames[targetIndex]
            one_N = len(this_primary)

            #calculate partial correlation
            one_pc_coefficient = 'NA'
            one_pc_p = 1

            try:
                if method == 's':
                    result = R_pcorr_function(this_primary, this_target, this_control, method='s')
                else:
                    result = R_pcorr_function(this_primary, this_target, this_control)

                #XZ: In very few cases, the returned coefficient is nan.
                #XZ: One way to detect nan is to compare the number to itself. NaN is always != NaN
                if result[0][0] == result[0][0]:
                    one_pc_coefficient = result[0][0]
                    #XZ: when the coefficient value is 1 (primary trait and target trait are the same),
                    #XZ: occationally, the returned p value is nan instead of 0.
                    if result[1][0] == result[1][0]:
                        one_pc_p = result[1][0]
                    elif abs(one_pc_coefficient - 1) < 0.0000001:
                        one_pc_p = 0
            except:
                pass

            #calculate zero order correlation
            one_corr_coefficient = 0
            one_corr_p = 1

            try:
                if method == 's':
                    R_result = R_corr_test(this_primary, this_target, method='spearman')
                else:
                    R_result = R_corr_test(this_primary, this_target)

                one_corr_coefficient = R_result[3][0]
                one_corr_p = R_result[2][0]
            except:
                pass

            traitinfo = [ one_name, one_N, one_pc_coefficient, one_pc_p, one_corr_coefficient, one_corr_p ]

            allcorrelations.append(traitinfo)

        return allcorrelations
    #End of function compute_partial


    allcorrelations = []

    target_trait_number = len(targetVals)

    if target_trait_number < 1000:
        allcorrelations = compute_partial ( primaryVal, controlVals, targetVals, targetNames, method )
    else:
        step = 1000
        job_number = math.ceil( float(target_trait_number)/step )

        job_targetVals_lists = []
        job_targetNames_lists = []

        for job_index in range( int(job_number) ):
            starti = job_index*step
            endi = min((job_index+1)*step, target_trait_number)

            one_job_targetVals_list = []
            one_job_targetNames_list = []

            for i in range( starti, endi ):
                one_job_targetVals_list.append( targetVals[i] )
                one_job_targetNames_list.append( targetNames[i] )

            job_targetVals_lists.append( one_job_targetVals_list )
            job_targetNames_lists.append( one_job_targetNames_list )

        ppservers = ()
        # Creates jobserver with automatically detected number of workers
        job_server = pp.Server(ppservers=ppservers)

        jobs = []
        results = []

        for i, one_job_targetVals_list in enumerate( job_targetVals_lists ):
            one_job_targetNames_list = job_targetNames_lists[i]
            #pay attention to modules from outside
            jobs.append( job_server.submit(func=compute_partial, args=( primaryVal, controlVals, one_job_targetVals_list, one_job_targetNames_list, method), depfuncs=(), modules=("rpy2.robjects",)) )

        for one_job in jobs:
            one_result = one_job()
            results.append( one_result )

        for one_result in results:
            for one_traitinfo in one_result:
                allcorrelations.append( one_traitinfo )

    return allcorrelations



#XZ, April 30, 2010: The input primaryTrait and targetTrait are instance of webqtlTrait
#XZ: The primaryTrait and targetTrait should have executed retrieveData function
def calZeroOrderCorr (primaryTrait, targetTrait, method='pearson'):

    #primaryTrait.retrieveData()

    #there is no None value in primary_val
    primary_strain, primary_val, primary_var = primaryTrait.exportInformative()

    #targetTrait.retrieveData()

    #there might be None value in target_val
    target_val = targetTrait.exportData(primary_strain, type="val")

    R_primary = rpy2.robjects.FloatVector(range(len(primary_val)))
    for i in range(len(primary_val)):
        R_primary[i] = primary_val[i]

    N = len(target_val)

    if None in target_val:
        goodIndex = []
        for i in range(len(target_val)):
            if target_val[i] != None:
                goodIndex.append(i)

        N = len(goodIndex)

        R_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
        for i in range(len(goodIndex)):
            R_primary[i] = primary_val[goodIndex[i]]

        R_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
        for i in range(len(goodIndex)):
            R_target[i] = target_val[goodIndex[i]]

    else:
        R_target = rpy2.robjects.FloatVector(range(len(target_val)))
        for i in range(len(target_val)):
            R_target[i] = target_val[i]

    R_corr_test = rpy2.robjects.r['cor.test']

    if method == 'spearman':
        R_result = R_corr_test(R_primary, R_target, method='spearman')
    else:
        R_result = R_corr_test(R_primary, R_target)

    corr_result = []
    corr_result.append( R_result[3][0] )
    corr_result.append( N )
    corr_result.append( R_result[2][0] )
    
    return corr_result
	
#####################################################################################
#Input: primaryValue(list): one list of expression values of one probeSet, 
#       targetValue(list): one list of expression values of one probeSet, 
#		method(string): indicate correlation method ('pearson' or 'spearman')
#Output: corr_result(list): first item is Correlation Value, second item is tissue number,
#                           third item is PValue
#Function: get correlation value,Tissue quantity ,p value result by using R;
#Note : This function is special case since both primaryValue and targetValue are from
#the same dataset. So the length of these two parameters is the same. They are pairs.
#Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on 
#the same tissue order
#####################################################################################	

def calZeroOrderCorrForTiss (primaryValue=[], targetValue=[], method='pearson'):

    R_primary = rpy2.robjects.FloatVector(range(len(primaryValue)))
    N = len(primaryValue)
    for i in range(len(primaryValue)):
        R_primary[i] = primaryValue[i]

    R_target = rpy2.robjects.FloatVector(range(len(targetValue)))
    for i in range(len(targetValue)):
        R_target[i]=targetValue[i]

    R_corr_test = rpy2.robjects.r['cor.test']
    if method =='spearman':
        R_result = R_corr_test(R_primary, R_target, method='spearman')
    else:
        R_result = R_corr_test(R_primary, R_target)
	
    corr_result =[]
    corr_result.append( R_result[3][0])
    corr_result.append( N )
    corr_result.append( R_result[2][0])

    return corr_result




def batchCalTissueCorr(primaryTraitValue=[], SymbolValueDict={}, method='pearson'):

    def cal_tissue_corr(primaryTraitValue, oneSymbolValueDict, method ):

        oneSymbolCorrDict = {}
        oneSymbolPvalueDict = {}

        R_corr_test = rpy2.robjects.r['cor.test']

        R_primary = rpy2.robjects.FloatVector(range(len(primaryTraitValue)))

        for i in range(len(primaryTraitValue)):
            R_primary[i] = primaryTraitValue[i]

        for (oneTraitSymbol, oneTraitValue) in oneSymbolValueDict.iteritems():
            R_target = rpy2.robjects.FloatVector(range(len(oneTraitValue)))
            for i in range(len(oneTraitValue)):
                R_target[i] = oneTraitValue[i]

            if method =='spearman':
                R_result = R_corr_test(R_primary, R_target, method='spearman')
            else:
                R_result = R_corr_test(R_primary, R_target)

            oneSymbolCorrDict[oneTraitSymbol] = R_result[3][0]
            oneSymbolPvalueDict[oneTraitSymbol] = R_result[2][0]

        return(oneSymbolCorrDict, oneSymbolPvalueDict)



    symbolCorrDict = {}
    symbolPvalueDict = {}

    items_number = len(SymbolValueDict)

    if items_number <= 1000:
        symbolCorrDict, symbolPvalueDict = cal_tissue_corr(primaryTraitValue, SymbolValueDict, method)
    else:
        items_list = SymbolValueDict.items()

        step = 1000
        job_number = math.ceil( float(items_number)/step )

        job_oneSymbolValueDict_list = []

        for job_index in range( int(job_number) ):
            starti = job_index*step
            endi = min((job_index+1)*step, items_number)

            oneSymbolValueDict = {}

            for i in range( starti, endi ):
                one_item = items_list[i]
                one_symbol = one_item[0]
                one_value = one_item[1]
                oneSymbolValueDict[one_symbol] = one_value

            job_oneSymbolValueDict_list.append( oneSymbolValueDict )


        ppservers = ()
        # Creates jobserver with automatically detected number of workers
        job_server = pp.Server(ppservers=ppservers)

        jobs = []
        results = []

        for i, oneSymbolValueDict in enumerate( job_oneSymbolValueDict_list ):

            #pay attention to modules from outside
            jobs.append( job_server.submit(func=cal_tissue_corr, args=(primaryTraitValue, oneSymbolValueDict, method), depfuncs=(), modules=("rpy2.robjects",)) )

        for one_job in jobs:
            one_result = one_job()
            results.append( one_result )

        for one_result in results:
            oneSymbolCorrDict, oneSymbolPvalueDict = one_result
            symbolCorrDict.update( oneSymbolCorrDict )
            symbolPvalueDict.update( oneSymbolPvalueDict )

    return (symbolCorrDict, symbolPvalueDict)

###########################################################################
#Input: cursor, GeneNameLst (list), TissueProbeSetFreezeId
#output: geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict (Dict)      
#function: get multi dicts for short and long label functions, and for getSymbolValuePairDict and 
# getGeneSymbolTissueValueDict to build dict to get CorrPvArray
#Note: If there are multiple probesets for one gene, select the one with highest mean.
###########################################################################	
def getTissueProbeSetXRefInfo(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
	Symbols =""	
	symbolList =[]
	geneIdDict ={}
	dataIdDict = {}
	ChrDict = {}
	MbDict = {}
	descDict = {}
	pTargetDescDict = {}

	count = len(GeneNameLst)

	# Added by NL 01/06/2011
	# Note that:inner join is necessary in this query to get distinct record in one symbol group with highest mean value
	# Duo to the limit size of TissueProbeSetFreezeId table in DB, performance of inner join is acceptable.
	if count==0:
		query='''		
				select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description 
				from (
					select Symbol, max(Mean) as maxmean 
					from TissueProbeSetXRef 
					where TissueProbeSetFreezeId=%s and Symbol!='' and Symbol Is Not Null group by Symbol) 
				as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;				
			'''%TissueProbeSetFreezeId
				
	else:
		for i, item in enumerate(GeneNameLst):
		
			if i == count-1:
				Symbols += "'%s'" %item
			else:
				Symbols += "'%s'," %item
				
		Symbols = "("+ Symbols+")"
		query='''
				select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description 
				from (
					select Symbol, max(Mean) as maxmean 
					from TissueProbeSetXRef 
					where TissueProbeSetFreezeId=%s and Symbol in %s group by Symbol) 
				as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;		
			'''% (TissueProbeSetFreezeId,Symbols)

	try: 
	
		cursor.execute(query)
		results =cursor.fetchall()
		resultCount = len(results)
		# Key in all dicts is the lower-cased symbol
		for i, item in enumerate(results):	
			symbol = item[0]
			symbolList.append(symbol)
			
			key =symbol.lower()
			geneIdDict[key]=item[1]
			dataIdDict[key]=item[2]			
			ChrDict[key]=item[3]
			MbDict[key]=item[4]
			descDict[key]=item[5]
			pTargetDescDict[key]=item[6]

	except:
		symbolList = None
		geneIdDict=None
		dataIdDict=None
		ChrDict=None
		MbDict=None
		descDict=None
		pTargetDescDict=None
		
	return symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict
		
###########################################################################
#Input: cursor, symbolList (list), dataIdDict(Dict)
#output: symbolValuepairDict (dictionary):one dictionary of Symbol and Value Pair,
#        key is symbol, value is one list of expression values of one probeSet;
#function: get one dictionary whose key is gene symbol and value is tissue expression data (list type).
#Attention! All keys are lower case!
###########################################################################	
def getSymbolValuePairDict(cursor=None,symbolList=None,dataIdDict={}):		
	symbolList = map(string.lower, symbolList)
	symbolValuepairDict={}
	valueList=[]

	for key in symbolList:
		if dataIdDict.has_key(key):
			DataId = dataIdDict[key]
			
			valueQuery = "select value from TissueProbeSetData where Id=%s" % DataId
			try :
				cursor.execute(valueQuery)
				valueResults = cursor.fetchall()
				for item in valueResults:
					item =item[0]
					valueList.append(item)	
				symbolValuepairDict[key] = valueList
				valueList=[]
			except:
				symbolValuepairDict[key] = None
			
	return symbolValuepairDict


########################################################################################################
#input: cursor, symbolList (list), dataIdDict(Dict): key is symbol
#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
#        key is symbol, value is one list of expression values of one probeSet.
#function: wrapper function for getSymbolValuePairDict function
#          build gene symbol list if necessary, cut it into small lists if necessary,
#          then call getSymbolValuePairDict function and merge the results.
########################################################################################################

def getGeneSymbolTissueValueDict(cursor=None,symbolList=None,dataIdDict={}):
        limitNum=1000
        count = len(symbolList)

        SymbolValuePairDict = {}

        if count !=0 and count <=limitNum:
                SymbolValuePairDict = getSymbolValuePairDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)

        elif count >limitNum:
                SymbolValuePairDict={}
                n = count/limitNum
                start =0
                stop =0

                for i in range(n):
                        stop =limitNum*(i+1)
                        gList1 = symbolList[start:stop]
                        PairDict1 = getSymbolValuePairDict(cursor=cursor,symbolList=gList1,dataIdDict=dataIdDict)
                        start =limitNum*(i+1)

                        SymbolValuePairDict.update(PairDict1)

                if stop < count:
                        stop = count
                        gList2 = symbolList[start:stop]
                        PairDict2 = getSymbolValuePairDict(cursor=cursor,symbolList=gList2,dataIdDict=dataIdDict)
                        SymbolValuePairDict.update(PairDict2)

        return SymbolValuePairDict

########################################################################################################
#input: cursor, GeneNameLst (list), TissueProbeSetFreezeId(int)
#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
#        key is symbol, value is one list of expression values of one probeSet.
#function: wrapper function of getGeneSymbolTissueValueDict function
#          for CorrelationPage.py
########################################################################################################

def getGeneSymbolTissueValueDictForTrait(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
	SymbolValuePairDict={}
	symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict = getTissueProbeSetXRefInfo(cursor=cursor,GeneNameLst=GeneNameLst,TissueProbeSetFreezeId=TissueProbeSetFreezeId)
	if symbolList:
		SymbolValuePairDict = getGeneSymbolTissueValueDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
	return SymbolValuePairDict
	
########################################################################################################
#Input: cursor(cursor): MySQL connnection cursor; 
#       priGeneSymbolList(list): one list of gene symbol;
#       symbolValuepairDict(dictionary): one dictionary of Symbol and Value Pair,
#               key is symbol, value is one list of expression values of one probeSet;
#Output: corrArray(array): array of Correlation Value, 
#        pvArray(array): array of PValue;
#Function: build corrArray, pvArray for display by calling  calculation function:calZeroOrderCorrForTiss
########################################################################################################

def getCorrPvArray(cursor=None,priGeneSymbolList=[],symbolValuepairDict={}):
        # setting initial value for corrArray, pvArray equal to 0
        Num = len(priGeneSymbolList)

        corrArray = [([0] * (Num))[:] for i in range(Num)] 
        pvArray = [([0] * (Num))[:] for i in range(Num)]
        i = 0
        for pkey in priGeneSymbolList:
                j = 0
                pkey = pkey.strip().lower()# key in symbolValuepairDict is low case
                if symbolValuepairDict.has_key(pkey):
                        priValue = symbolValuepairDict[pkey]
                        for tkey in priGeneSymbolList:
                                tkey = tkey.strip().lower()# key in symbolValuepairDict is low case
                                if priValue and symbolValuepairDict.has_key(tkey):
                                        tarValue = symbolValuepairDict[tkey]

                                        if tarValue:
                                                if i>j:
                                                        # corrArray stores Pearson Correlation values
                                                        # pvArray stores Pearson P-Values
                                                        pcorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue)
                                                        corrArray[i][j] =pcorr_result[0]
                                                        pvArray[i][j] =pcorr_result[2]
                                                elif i<j:
                                                        # corrArray stores Spearman Correlation values
                                                        # pvArray stores Spearman P-Values
                                                        scorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue,method='spearman')
                                                        corrArray[i][j] =scorr_result[0]
                                                        pvArray[i][j] =scorr_result[2]
                                                else:
                                                        # on the diagonal line, correlation value is 1, P-Values is 0
                                                        corrArray[i][j] =1
                                                        pvArray[i][j] =0
                                                j+=1
                                        else:
                                                corrArray[i][j] = None
                                                pvArray[i][j] = None
                                                j+=1
                                else:
                                        corrArray[i][j] = None
                                        pvArray[i][j] = None
                                        j+=1
                else: 
                        corrArray[i][j] = None
                        pvArray[i][j] = None

                i+=1

        return corrArray, pvArray

########################################################################################################
#Input: cursor(cursor): MySQL connnection cursor; 
#       primaryTraitSymbol(string): one gene symbol;
#		TissueProbeSetFreezeId (int): Id of related TissueProbeSetFreeze
#       method: '0' default value, Pearson Correlation; '1', Spearman Correlation
#Output: symbolCorrDict(Dict): Dict of Correlation Value, key is symbol 
#        symbolPvalueDict(Dict): Dict of PValue,key is symbol ;
#Function: build symbolCorrDict, symbolPvalueDict for display by calling  calculation function:calZeroOrderCorrForTiss
########################################################################################################
def calculateCorrOfAllTissueTrait(cursor=None, primaryTraitSymbol=None, TissueProbeSetFreezeId=None,method='0'):

	symbolCorrDict = {}
	symbolPvalueDict = {}

	primaryTraitSymbolValueDict = getGeneSymbolTissueValueDictForTrait(cursor=cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
	primaryTraitValue = primaryTraitSymbolValueDict.values()[0]
	
	SymbolValueDict = getGeneSymbolTissueValueDictForTrait(cursor=cursor, GeneNameLst=[], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
	
	if method =='1':
		symbolCorrDict, symbolPvalueDict = batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman')
	else:
		symbolCorrDict, symbolPvalueDict = batchCalTissueCorr(primaryTraitValue,SymbolValueDict)


	return (symbolCorrDict, symbolPvalueDict)