aboutsummaryrefslogtreecommitdiff
path: root/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008.htm
blob: 8a9290b6332fd8d4274929b03395468397850e66 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
<html>

<head>
<meta http-equiv=Content-Type content="text/html; charset=macintosh">
<meta name=ProgId content=PowerPoint.Slide>
<meta name=Generator content="Microsoft Macintosh PowerPoint 11">
<link id=Main-File rel=Main-File href="webqtl_demo2.ppt.htm">
<title>PowerPoint Presentation  -  Complex trait analysis, develop-ment, and
genomics</title>
<link title="Presentation File" type="application/powerpoint" rel=alternate
href="webqtl_demo2.ppt.ppt">
<script>
if ( ! top.PPTPRESENTATION ) {
	window.location.replace( "endshow.htm" );
}
</script>
<meta name=Description content="Aug-15-05: Evaluating candidate genes">
<link rel=Stylesheet href="master03_stylesheet.css">
<style media=print>
<!--.sld
	{left:0px !important;
	width:6.0in !important;
	height:4.5in !important;
	font-size:76% !important;}
-->
</style>
<script language=JavaScript src=script.js></script><script language=JavaScript><!--
gId="slide0008.htm"
if ( !parent.base.g_done && (parent.base.msie < 0 ) ) {
	parent.base.g_done = 1;
	document.location.replace( parent.base.GetHrefObj(parent.base.g_currentSlide).m_slideHref);
}
if( !IsNts() ) Redirect( "PPTSld", gId );
var g_hasTrans = true, g_autoTrans = false, g_transSecs = 1;
//-->
</script><script for=window event=onload language=JavaScript><!--
if( !IsSldOrNts() ) return;
if( MakeNotesVis() ) return;
LoadSld( gId );
playList();MakeSldVis(1);
//-->
</script>
</head>

<body style='margin:0px;background-color:black' onclick="DocumentOnClick(event)"
onresize="_RSW()" onkeypress="_KPH(event)">

<div id=SlideObj class=sld style='position:absolute;top:0px;left:0px;
width:755px;height:566px;font-size:16px;background-color:#484848;clip:rect(0%, 101%, 101%, 0%);
visibility:hidden'><img src="master03_background.png" v:shapes="_x0000_s1026"
style='position:absolute;top:0%;left:0%;width:100.0%;height:100.0%'><img
border=0 src="slide0008_image076.png" style='position:absolute;top:34.09%;
left:1.72%;width:97.48%;height:61.48%'>

<div style='position:absolute;top:-1.06%;left:.79%;width:93.64%;height:8.65%;
filter:DropShadow(Color=#000000, OffX=2, OffY=2)'>

<div class=T style='mso-line-spacing:"-358 0 -1";position:absolute;top:18.36%;
left:1.41%;width:97.31%;height:75.51%'><span style='font-family:Verdana;
font-size:64%'>Evaluating candidate genes</span><span style='font-family:Verdana;
font-size:73%;mso-special-format:lastCR;display:none'><i><br>
</i></span></div>

</div>

<img border=0 src="slide0008_image077.png" style='position:absolute;top:8.83%;
left:1.72%;width:34.83%;height:22.61%'>

<div style='position:absolute;top:3.35%;left:69.53%;width:33.9%;height:17.84%;
filter:DropShadow(Color=#000000, OffX=2, OffY=2)'>

<div class=O style='position:absolute;top:3.96%;left:2.73%;width:93.75%;
height:91.08%'>

<div style='text-align:center;position:absolute;top:0%;left:0%;width:100.0%;
height:33.69%'><span style='font-size:200%;color:#E9EB5D'><i>Right
position<br>
</i></span></div>

<div style='text-align:center;position:absolute;top:32.6%;left:0%;width:100.0%;
height:67.39%'><span style='position:absolute;top:0%;left:.41%;width:100.0%'><span
style='font-size:200%;color:#E9EB5D'><i>and high </i></span></span><span
style='position:absolute;top:50.0%;left:0%;width:100.0%'><span
style='font-size:200%;color:#E9EB5D'><i>correlation</i></span></span></div>

</div>

</div>

<div style='position:absolute;top:17.84%;left:75.89%;width:21.72%;height:14.31%;
filter:DropShadow(Color=#000000, OffX=2, OffY=2)'>

<div class=O style='position:absolute;top:3.7%;left:0%;width:100.0%;height:
88.88%'>

<div style='text-align:center;position:absolute;top:0%;left:6.7%;width:86.58%;
height:58.33%'><span style='font-size:267%;color:#E9EB5D'><i><span
style="mso-spacerun: yes">&nbsp;</span></i></span><span style='font-size:200%;
color:#E9EB5D'><i>= better<br>
</i></span></div>

<div style='text-align:center;position:absolute;top:56.94%;left:0%;width:100.0%;
height:43.05%'><span style='font-size:200%;color:#E9EB5D'><i>candidates</i></span></div>

</div>

</div>

</div>

<div id=NotesObj style='display:none'>

<table style='color:white' border=0 width="100%">
 <tr>
  <td width=5 nowrap></td>
  <td width="100%"></td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><font face="Times New Roman" size=4><b>Evaluating
  candidate genes (CHECKED BOXES) responsible for variability in APP
  expression:</b></font><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><font face="Times New Roman" size=4>A large number
  of genes are usually in the QTL interval and are therefore POSITIONAL
  CANDIDATES, but they will differ greatly in their biological and
  bioinformatic plausibility. Assume that the QTL has been located between 119
  and 131 Mb (12 Mb). There will typically be 12 to 15 genes per Mb, so we
  might need to evaluate several hundred positional candidates. In this
  particular case there are about 100 known genes in this interval. Eight of
  these are highlighted in the table above with check marks in the boxes to the
  left.<span style="mso-spacerun: yes">&nbsp; </span>We need to highlight and
  objectively score the biologically relevant subset of all 100 positional
  candidate genes. We could look through gene ontologies and expression levels
  to help us shorten the list. An alternate way available using WebQTL is to
  generate a list of those genes in this interval that have transcripts that
  co-vary in expression with App expression. That is what the table shows.</font><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><font face="Times New Roman" size=4>Notes:</font><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><font face="Times New Roman" size=4>1. To replicate
  this table go back to the Trait Data and Analysis Form. Choose to sort
  correlations by POSITION and select RETURN = 500. Then scroll down the list
  to Chr 7 and review the subset of positional candidates that share expression
  with App. You should see a list similar to that shown above. Gtf3c1 is a good
  biological candidate and has a high covariation in expression with App.</font><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><font face="Times New Roman" size=4>2. Caveat:<span
  style="mso-spacerun: yes">&nbsp;&nbsp; </span>Of course, the gene or genes
  that control App expression may not be in this list. A protein coding
  difference might be the ultimate cause of variation in App transcript level
  and the expression covariation might be close to zero. Our list may also
  simply be missing the right transcript since the microarray is not truly
  comprehensive. Furthermore, even if the list contains the QTL gene, an
  expression difference may only have been expressed early in development or
  even in another tissue such as liver. While it is important to recognize
  these caveats, it is equally important to devise a rational way to rank
  candidates given existing data. Coexpression is one of several criteria used
  to evaluate positional candidates. We will see others in the next slide.</font><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><font face="Times New Roman" size=4>3. We can also
  assess the likelihood that candidates contain functional polymorphism in
  promoters and enhancers that affect their expression simply by mapping the
  transcripts of all candidate genes to see if they �map back� to the location
  of gene itself. A transcript that maps to its own location is referred to as
  a cis QTL. We essentially ask: Which of the transcripts listed in the
  Correlation Table above (from Gtf3c1 to Zranb1) has variation in expression
  that maps to Chr 7 at about 120 Mb?<span style="mso-spacerun: yes">&nbsp;
  </span>The logic of this search is that if a gene controls the level of its
  own expression it is also much more likely to generate other downstream
  effects. The Gtf3c1 transcript is a weak cis QTL with a local LRS maximum of
  about 7.0 (D alleles are high). That is just about sufficient to declare it
  to be a cis QTL. [No whole genome correction is required and a point-wise
  p-value of 0.05 is the appropriate test. A p-value of 0.05 is roughly
  equivalent to an LRS of 6.0 (LOD = 1.3).]</font><br>
  </td>
 </tr>
 <tr>
  <td colspan=1></td>
  <td align=left colspan=1><br>
  </td>
 </tr>
</table>

</div>

<script language=JavaScript><!--
function playList() {

}
//-->
</script>
</body>

</html>