blob: 2f78a09517bdff75e436ca31a77ad7f682ece587 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
<div class="main">
<div class="col-xs-3 options">
<div class="form-horizontal section-form-div">
<div class="form-group">
<label for="corr_type" class="col-xs-2 control-label">Method</label>
<div class="col-xs-3 controls">
<select name="corr_type" class="form-control">
<option value="sample">Sample r</option>
{% if dataset.type == 'ProbeSet' %}
<option value="lit">Literature r</option>
<option value="tissue">Tissue r</option>
{% endif %}
</select>
</div>
</div>
<div class="form-group">
<label for="corr_dataset" class="col-xs-2 control-label">Database</label>
<div class="col-xs-10 controls">
<select name="corr_dataset" class="form-control">
{% for tissue in corr_tools.dataset_menu %}
{% if tissue.tissue %}
<optgroup label="{{ tissue.tissue }} ------">
{% endif %}
{% for dataset in tissue.datasets %}
<option data-type="{% if tissue.tissue %}mrna_assay{% elif dataset[1][-4:] == 'Geno' %}geno{% else %}pheno{% endif %}" value="{{ dataset[1] }}"
{% if corr_tools.dataset_menu_selected == dataset[1] %}
selected
{% endif %}>
{{ dataset[0] }}
</option>
{% endfor %}
{% if tissue.tissue %}
</optgroup>
{% endif %}
{% endfor %}
</select>
</div>
</div>
<div class="form-group">
<label for="corr_return_results" class="col-xs-2 control-label">Limit to</label>
<div class="col-xs-4 controls">
<select name="corr_return_results" class="form-control">
{% for return_result in corr_tools.return_results_menu %}
<option value="{{ return_result }}"
{% if corr_tools.return_results_menu_selected == return_result %}
selected
{% endif %}>
Top {{ return_result }}
</option>
{% endfor %}
</select>
</div>
</div>
<div class="form-group">
<label for="corr_samples_group" class="col-xs-2 control-label">Samples</label>
<div class="col-xs-4 controls">
<select name="corr_samples_group" class="form-control">
{% for group, pretty_group in sample_group_types.items() %}
<option value="{{ group }}">{{ pretty_group }}</option>
{% endfor %}
</select>
</div>
</div>
<div id="corr_sample_method" class="form-group">
<label for="corr_sample_method" class="col-xs-2 control-label">Type</label>
<div class="col-xs-4 controls">
<select name="corr_sample_method" class="form-control">
<option value="pearson">Pearson</option>
<option value="spearman">Spearman Rank</option>
</select>
</div>
</div>
<div id="min_expr_filter" class="form-group" style="display: {% if dataset.type != 'Geno' %}block{% else %}none{% endif %};">
<label class="col-xs-2 control-label">Min Expr</label>
<div class="col-xs-4 controls">
<input name="min_expr" value="" type="text" class="form-control min-expr-field">
</div>
</div>
<div class="form-group">
<label for="location_type" class="col-xs-2 control-label">Location Type</label>
<div class="col-xs-4 controls">
<select name="location_type" class="form-control">
<option value="gene" {% if dataset.type == 'Publish' %}disabled{% endif %}>Gene</option>
<option value="highest_lod">Highest LOD</option>
</select>
</div>
</div>
<div id="location_filter" class="form-group">
<label class="col-xs-2 control-label">Location</label>
<div class="col-xs-10 controls">
<span>
Chr: <input name="loc_chr" value="" type="text" class="form-control corr-location">
Mb: <input name="min_loc_mb" value="" type="text" class="form-control corr-location"> to <input name="max_loc_mb" value="" type="text" class="form-control corr-location">
</span>
<br>
</div>
</div>
<div class="form-group">
<label class="col-xs-2 control-label">Range</label>
<div class="col-xs-5 controls">
<input name="p_range_lower" value="" type="hidden">
<input name="p_range_upper" value="" type="hidden">
<span class="inline-div">
<div id="p_range_slider" class="p-range-slider"></div>
<span id="p_range_lower" class="p-range-lower"></span>
<span id="p_range_upper" class="p-range-upper"></span>
</span>
</div>
</div>
<div class="form-group">
<label class="col-xs-2 control-label" >Use Cache</label>
<div class="col-xs-5 controls">
<input id="use_cache" name="use_cache" type="checkbox" checked>
</div>
</div>
<div class="form-group">
<label for="corr_sample_method" class="col-xs-2 control-label"></label>
<div class="col-xs-3 controls">
<input type="button" class="btn corr_compute submit_special btn-success" data-url="/corr_compute" title="Compute Correlation" value="Compute">
</div>
</div>
</div>
</div>
<div class="descriptions">
<div class="section-form-div">
<dl>
<dt class="map-method-text">Sample Correlation</dt>
<dd>The <a href="http://genenetwork.org/correlationAnnotation.html#genetic_r">Sample Correlation</a>
is computed
between trait data and any
other traits in the sample database selected above. Use
<a href="{{ url_for('gn_docs_blueprint.glossary') }}#Correlations">Spearman
Rank</a>
when the sample size is small (<20) or when there are influential outliers.</dd>
<dt class="map-method-text">Literature Correlation</dt>
<dd>The <a href="http://genenetwork.org/correlationAnnotation.html#literatureCorr">Literature Correlation</a>
(Lit r) between
this gene and all other genes is computed<br>
using the <span class="broken_link" href="https://grits.eecs.utk.edu/sgo/sgo.html">
Semantic Gene Organizer</span>
and human, rat, and mouse data from PubMed.
Values are ranked by Lit r, but Sample r and Tissue r are also displayed.<br>
<a href="{{ url_for('gn_docs_blueprint.glossary') }}#Literature">More on using Lit r</a></dd>
<dt class="map-method-text">Tissue Correlation</dt>
<dd>The <a href="http://genenetwork.org/webqtl/main.py?FormID=tissueCorrelation">Tissue Correlation</a>
(Tissue r)
estimates the similarity of expression of two genes
or transcripts across different cells, tissues, or organs
(<a href="http://genenetwork.org/correlationAnnotation.html#tissueCorr">glossary</a>).
Tissue correlations
are generated by analyzing expression in multiple samples usually taken from single cases.<br>
<strong>Pearson</strong> and <strong>Spearman Rank</strong> correlations have been
computed for all pairs of genes using data from mouse samples.<br></dd>
</dl>
</div>
</div>
</div>
|