aboutsummaryrefslogtreecommitdiff
path: root/gn2/wqflask/show_trait/show_trait.py
blob: 1ee058abce361ecf0c9941053cc98566e483e33a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
from typing import Dict

import string
import datetime
import uuid
import requests
import json as json

from collections import OrderedDict

import numpy as np
import scipy.stats as ss

from gn2.wqflask.database import database_connection

from gn2.base import webqtlConfig
from gn2.wqflask.show_trait.SampleList import SampleList
from gn2.base.trait import create_trait
from gn2.base import data_set
from gn2.utility import helper_functions
from gn2.utility.tools import get_setting, locate_ignore_error
from gn2.utility.tools import GN_PROXY_URL
from gn2.utility.redis_tools import get_redis_conn, get_resource_id

from gn3.authentication import get_highest_user_access_role

Redis = get_redis_conn()
ONE_YEAR = 60 * 60 * 24 * 365


###############################################
#
# Todo: Put in security to ensure that user has permission to access
# confidential data sets And add i.p.limiting as necessary
#
##############################################


class ShowTrait:
    def __init__(self, db_cursor, user_id, kw):
        if 'trait_id' in kw and kw['dataset'] != "Temp":
            self.temp_trait = False
            self.trait_id = kw['trait_id']
            helper_functions.get_species_dataset_trait(self, kw)
            self.resource_id = get_resource_id(self.dataset,
                                           self.trait_id)
        elif 'group' in kw:
            self.temp_trait = True
            self.trait_id = "Temp_" + kw['species'] + "_" + kw['group'] + \
                "_" + datetime.datetime.now().strftime("%m%d%H%M%S")
            self.temp_species = kw['species']
            self.temp_group = kw['group']
            self.dataset = data_set.create_dataset(
                dataset_name="Temp", dataset_type="Temp", group_name=self.temp_group)

            # Put values in Redis so they can be looked up later if
            # added to a collection
            Redis.set(self.trait_id, kw['trait_paste'], ex=ONE_YEAR)
            self.trait_vals = kw['trait_paste'].split()
            self.this_trait = create_trait(dataset=self.dataset,
                                           name=self.trait_id,
                                           cellid=None)
        else:
            self.temp_trait = True
            self.trait_id = kw['trait_id']
            self.temp_species = self.trait_id.split("_")[1]
            self.temp_group = self.trait_id.split("_")[2]
            self.dataset = data_set.create_dataset(
                dataset_name="Temp", dataset_type="Temp", group_name=self.temp_group)
            self.this_trait = create_trait(dataset=self.dataset,
                                           name=self.trait_id,
                                           cellid=None)
            self.trait_vals = Redis.get(self.trait_id).split()

        # Get verify/rna-seq link URLs
        try:
            blatsequence = self.this_trait.blatseq if self.dataset.type == "ProbeSet" else self.this_trait.sequence
            if not blatsequence:
                # XZ, 06/03/2009: ProbeSet name is not unique among platforms. We should use ProbeSet Id instead.
                seqs = ()
                if self.dataset.type == "ProbeSet":
                    db_cursor.execute(
                        "SELECT Probe.Sequence, Probe.Name "
                        "FROM Probe, ProbeSet, ProbeSetFreeze, "
                        "ProbeSetXRef WHERE "
                        "ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
                        "AND ProbeSetXRef.ProbeSetId = ProbeSet.Id AND "
                        "ProbeSetFreeze.Name = %s AND "
                        "ProbeSet.Name = %s AND "
                        "Probe.ProbeSetId = ProbeSet.Id ORDER "
                        "BY Probe.SerialOrder",
                        (self.this_trait.dataset.name, self.this_trait.name,)
                    )
                else:
                    db_cursor.execute(
                        "SELECT Geno.Sequence "
                        "FROM Geno, GenoXRef, GenoFreeze "
                        "WHERE Geno.Name = %s AND "
                        "Geno.Id = GenoXRef.GenoId AND "
                        "GenoXRef.GenoFreezeId = GenoFreeze.Id AND "
                        "GenoFreeze.Name = %s",
                        (self.this_trait.name, self.this_trait.dataset.name)
                    )
                seqs = db_cursor.fetchall()
                if not seqs:
                    raise ValueError
                else:
                    blatsequence = ''
                    for seqt in seqs:
                        if int(seqt[1][-1]) % 2 == 1:
                            blatsequence += string.strip(seqt[0])

            # --------Hongqiang add this part in order to not only blat ProbeSet, but also blat Probe
            blatsequence = '%3E' + self.this_trait.name + '%0A' + blatsequence + '%0A'

            # XZ, 06/03/2009: ProbeSet name is not unique among platforms. We should use ProbeSet Id instead.
            seqs = ()
            db_cursor.execute(
                "SELECT Probe.Sequence, Probe.Name "
                "FROM Probe, ProbeSet, ProbeSetFreeze, "
                "ProbeSetXRef WHERE "
                "ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
                "AND ProbeSetXRef.ProbeSetId = ProbeSet.Id AND "
                "ProbeSetFreeze.Name = %s AND ProbeSet.Name = %s "
                "AND Probe.ProbeSetId = ProbeSet.Id "
                "ORDER BY Probe.SerialOrder",
                (self.this_trait.dataset.name, self.this_trait.name,)
            )
            seqs = db_cursor.fetchall()
            for seqt in seqs:
                if int(seqt[1][-1]) % 2 == 1:
                    blatsequence += '%3EProbe_' + \
                        seqt[1].strip() + '%0A' + seqt[0].strip() + '%0A'

            if self.dataset.group.species == "rat":
                self.UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % (
                    'rat', 'rn7', blatsequence)
                self.UTHSC_BLAT_URL = ""
            elif self.dataset.group.species == "mouse":
                self.UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % (
                    'mouse', 'mm10', blatsequence)
                self.UTHSC_BLAT_URL = webqtlConfig.UTHSC_BLAT % (
                    'mouse', 'mm10', blatsequence)
            elif self.dataset.group.species == "human":
                self.UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % (
                    'human', 'hg38', blatsequence)
                self.UTHSC_BLAT_URL = ""
            else:
                self.UCSC_BLAT_URL = ""
                self.UTHSC_BLAT_URL = ""
        except:
            self.UCSC_BLAT_URL = ""
            self.UTHSC_BLAT_URL = ""

        if self.dataset.type == "ProbeSet":
            self.show_probes = "True"

        trait_units = get_trait_units(self.this_trait)
        self.get_external_links()
        self.build_correlation_tools()

        self.ncbi_summary = get_ncbi_summary(self.this_trait)

        # Get nearest marker for composite mapping
        if not self.temp_trait:
            if check_if_attr_exists(self.this_trait, 'locus_chr') and self.dataset.type != "Geno" and self.dataset.type != "Publish":
                self.nearest_marker = get_nearest_marker(
                    self.this_trait, self.dataset)
            else:
                self.nearest_marker = ""

        self.make_sample_lists()

        trait_vals_by_group = []
        for sample_type in self.sample_groups:
            trait_vals_by_group.append(get_trait_vals(sample_type.sample_list))

        self.max_digits_by_group, self.no_decimal_place = get_max_digits(trait_vals_by_group)

        self.qnorm_vals = quantile_normalize_vals(self.sample_groups, trait_vals_by_group)
        self.z_scores = get_z_scores(self.sample_groups, trait_vals_by_group)

        self.temp_uuid = uuid.uuid4()

        self.sample_group_types = OrderedDict()
        if len(self.sample_groups) > 1:
            self.sample_group_types['samples_primary'] = self.dataset.group.name
            self.sample_group_types['samples_other'] = "Other"
            self.sample_group_types['samples_all'] = "All"
        else:
            self.sample_group_types['samples_primary'] = self.dataset.group.name
        sample_lists = [group.sample_list for group in self.sample_groups]

        self.categorical_var_list = []
        self.numerical_var_list = []
        if not self.temp_trait:
            # ZS: Only using first samplelist, since I think mapping only uses those samples
            self.categorical_var_list = get_categorical_variables(
                self.this_trait, self.sample_groups[0])
            self.numerical_var_list = get_numerical_variables(
                self.this_trait, self.sample_groups[0])

        # ZS: Get list of chromosomes to select for mapping
        self.chr_list = [["All", -1]]
        for i, this_chr in enumerate(self.dataset.species.chromosomes.chromosomes(db_cursor)):
            self.chr_list.append(
                [self.dataset.species.chromosomes.chromosomes(db_cursor)[this_chr].name, i])

        self.genofiles = self.dataset.group.get_genofiles()
        study_samplelist_json = self.dataset.group.get_study_samplelists()
        self.study_samplelists = [study["title"] for study in study_samplelist_json]

        # ZS: No need to grab scales from .geno file unless it's using
        # a mapping method that reads .geno files
        if "QTLReaper" or "R/qtl" in dataset.group.mapping_names:
            if self.genofiles:
                self.scales_in_geno = get_genotype_scales(self.genofiles)
            else:
                self.scales_in_geno = get_genotype_scales(
                    self.dataset.group.name + ".geno")
        else:
            self.scales_in_geno = {}

        self.has_num_cases = has_num_cases(self.this_trait)

        # ZS: Needed to know whether to display bar chart + get max
        # sample name length in order to set table column width
        self.num_values = 0
        # ZS: So it knows whether to display the Binary R/qtl mapping
        # method, which doesn't work unless all values are 0 or 1
        self.binary = "true"
        # ZS: Since we don't want to show log2 transform option for
        # situations where it doesn't make sense
        self.negative_vals_exist = "false"
        max_samplename_width = 1
        for group in self.sample_groups:
            for sample in group.sample_list:
                if len(sample.name) > max_samplename_width:
                    max_samplename_width = len(sample.name)
                if sample.display_value != "x":
                    self.num_values += 1
                    if sample.display_value != 0 or sample.display_value != 1:
                        self.binary = "false"
                    if sample.value < 0:
                        self.negative_vals_exist = "true"

        # ZS: Check whether any attributes have few enough distinct
        # values to show the "Block samples by group" option
        self.categorical_attr_exists = "false"
        for attribute in self.sample_groups[0].attributes:
            if len(self.sample_groups[0].attributes[attribute].distinct_values) <= 10:
                self.categorical_attr_exists = "true"
                break

        sample_column_width = max_samplename_width * 8

        self.stats_table_width, self.trait_table_width = get_table_widths(
            self.sample_groups, sample_column_width, self.has_num_cases)

        if self.num_values >= 5000:
            self.maf = 0.01
        else:
            self.maf = 0.05

        trait_symbol = None
        short_description = None
        if not self.temp_trait:
            if self.this_trait.symbol:
                trait_symbol = self.this_trait.symbol
                short_description = trait_symbol

            elif hasattr(self.this_trait, 'post_publication_abbreviation'):
                short_description = self.this_trait.post_publication_abbreviation

            elif hasattr(self.this_trait, 'pre_publication_abbreviation'):
                short_description = self.this_trait.pre_publication_abbreviation

        # Todo: Add back in the ones we actually need from below, as we discover we need them
        hddn = OrderedDict()

        if self.dataset.group.allsamples:
            hddn['allsamples'] = ','.join(self.dataset.group.allsamples)
        hddn['primary_samples'] = ','.join(self.primary_sample_names)
        hddn['trait_id'] = self.trait_id
        hddn['trait_display_name'] = self.this_trait.display_name
        hddn['dataset'] = self.dataset.name
        hddn['temp_trait'] = False
        if self.temp_trait:
            hddn['temp_trait'] = True
            hddn['group'] = self.temp_group
            hddn['species'] = self.temp_species
        else:
            hddn['group'] = self.dataset.group.name
            hddn['species'] = self.dataset.group.species
        hddn['use_outliers'] = False
        hddn['method'] = "gemma"
        hddn['mapmethod_rqtl'] = "hk"
        hddn['mapmodel_rqtl'] = "normal"
        hddn['pair_scan'] = ""
        hddn['selected_chr'] = -1
        hddn['mapping_display_all'] = True
        hddn['suggestive'] = 0
        hddn['study_samplelists'] = json.dumps(study_samplelist_json)
        hddn['num_perm'] = 0
        hddn['categorical_vars'] = ""
        if self.categorical_var_list:
            hddn['categorical_vars'] = ",".join(self.categorical_var_list)
        hddn['manhattan_plot'] = ""
        hddn['control_marker'] = ""
        if not self.temp_trait:
            if hasattr(self.this_trait, 'locus_chr') and self.this_trait.locus_chr != "" and self.dataset.type != "Geno" and self.dataset.type != "Publish":
                hddn['control_marker'] = self.nearest_marker
        hddn['do_control'] = False
        hddn['maf'] = 0.05
        hddn['mapping_scale'] = "physic"
        hddn['compare_traits'] = []
        hddn['export_data'] = ""
        hddn['export_format'] = "excel"
        if len(self.scales_in_geno) < 2 and bool(self.scales_in_geno):
            hddn['mapping_scale'] = self.scales_in_geno[list(
                self.scales_in_geno.keys())[0]][0][0]

        # We'll need access to this_trait and hddn in the Jinja2
        # Template, so we put it inside self
        self.hddn = hddn

        js_data = dict(trait_id=self.trait_id,
                       trait_symbol=trait_symbol,
                       max_digits = self.max_digits_by_group,
                       no_decimal_place = self.no_decimal_place,
                       short_description=short_description,
                       unit_type=trait_units,
                       dataset_type=self.dataset.type,
                       species=self.dataset.group.species,
                       scales_in_geno=self.scales_in_geno,
                       data_scale=self.dataset.data_scale,
                       sample_group_types=self.sample_group_types,
                       sample_lists=sample_lists,
                       se_exists=self.sample_groups[0].se_exists,
                       has_num_cases=self.has_num_cases,
                       attributes=self.sample_groups[0].attributes,
                       categorical_attr_exists=self.categorical_attr_exists,
                       categorical_vars=",".join(self.categorical_var_list),
                       num_values=self.num_values,
                       qnorm_values=self.qnorm_vals,
                       zscore_values=self.z_scores,
                       sample_column_width=sample_column_width,
                       temp_uuid=self.temp_uuid)
        self.js_data = js_data

    def get_external_links(self):
        # ZS: There's some weirdness here because some fields don't
        # exist while others are empty strings
        self.pubmed_link = webqtlConfig.PUBMEDLINK_URL % self.this_trait.pubmed_id if check_if_attr_exists(
            self.this_trait, 'pubmed_id') else None
        self.ncbi_gene_link = webqtlConfig.NCBI_LOCUSID % self.this_trait.geneid if check_if_attr_exists(
            self.this_trait, 'geneid') else None
        self.omim_link = webqtlConfig.OMIM_ID % self.this_trait.omim if check_if_attr_exists(
            self.this_trait, 'omim') else None
        self.homologene_link = webqtlConfig.HOMOLOGENE_ID % self.this_trait.homologeneid if check_if_attr_exists(
            self.this_trait, 'homologeneid') else None

        self.genbank_link = None
        if check_if_attr_exists(self.this_trait, 'genbankid'):
            genbank_id = '|'.join(self.this_trait.genbankid.split('|')[0:10])
            if genbank_id[-1] == '|':
                genbank_id = genbank_id[0:-1]
            self.genbank_link = webqtlConfig.GENBANK_ID % genbank_id

        self.uniprot_link = None
        if check_if_attr_exists(self.this_trait, 'uniprotid'):
            self.uniprot_link = webqtlConfig.UNIPROT_URL % self.this_trait.uniprotid

        self.genotation_link = self.rgd_link = self.phenogen_link = self.gtex_link = self.genebridge_link = self.ucsc_blat_link = self.biogps_link = self.protein_atlas_link = None
        self.string_link = self.panther_link = self.aba_link = self.ebi_gwas_link = self.wiki_pi_link = self.genemania_link = self.ensembl_link = None
        if self.this_trait.symbol:
            self.genotation_link = webqtlConfig.GENOTATION_URL % self.this_trait.symbol
            self.gtex_link = webqtlConfig.GTEX_URL % self.this_trait.symbol
            self.string_link = webqtlConfig.STRING_URL % self.this_trait.symbol
            self.panther_link = webqtlConfig.PANTHER_URL % self.this_trait.symbol
            self.ebi_gwas_link = webqtlConfig.EBIGWAS_URL % self.this_trait.symbol
            self.protein_atlas_link = webqtlConfig.PROTEIN_ATLAS_URL % self.this_trait.symbol

            if self.dataset.group.species == "mouse" or self.dataset.group.species == "human":
                self.rgd_link = webqtlConfig.RGD_URL % (
                    self.this_trait.symbol, self.dataset.group.species.capitalize())
                if self.dataset.group.species == "mouse":
                    self.genemania_link = webqtlConfig.GENEMANIA_URL % (
                        "mus-musculus", self.this_trait.symbol)
                else:
                    self.genemania_link = webqtlConfig.GENEMANIA_URL % (
                        "homo-sapiens", self.this_trait.symbol)

                if self.dataset.group.species == "mouse":
                    self.aba_link = webqtlConfig.ABA_URL % self.this_trait.symbol
                    results = ()
                    with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor:
                        cursor.execute(
                            "SELECT chromosome, txStart, txEnd FROM "
                            "GeneList WHERE geneSymbol = %s",
                            (self.this_trait.symbol,)
                        )
                        results = cursor.fetchone()
                    if results:
                        chr, transcript_start, transcript_end = results
                    else:
                        chr = transcript_start = transcript_end = None

                    if chr and transcript_start and transcript_end and self.this_trait.refseq_transcriptid:
                        transcript_start = int(transcript_start * 1000000)
                        transcript_end = int(transcript_end * 1000000)
                        self.ucsc_blat_link = webqtlConfig.UCSC_REFSEQ % (
                            'mm10', self.this_trait.refseq_transcriptid, chr, transcript_start, transcript_end)

            if self.dataset.group.species == "rat":
                self.rgd_link = webqtlConfig.RGD_URL % (
                    self.this_trait.symbol, self.dataset.group.species.capitalize())
                self.phenogen_link = webqtlConfig.PHENOGEN_URL % (
                    self.this_trait.symbol)
                self.genemania_link = webqtlConfig.GENEMANIA_URL % (
                    "rattus-norvegicus", self.this_trait.symbol)

                results = ()
                with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor:
                    cursor.execute(
                        "SELECT kgID, chromosome, txStart, txEnd "
                        "FROM GeneList_rn33 WHERE geneSymbol = %s",
                        (self.this_trait.symbol,)
                    )
                    if results := cursor.fetchone():
                        kgId, chr, transcript_start, transcript_end = results
                    else:
                        kgId = chr = transcript_start = transcript_end = None

                if chr and transcript_start and transcript_end and kgId:
                    # Convert to bases from megabases
                    transcript_start = int(transcript_start * 1000000)
                    transcript_end = int(transcript_end * 1000000)
                    self.ucsc_blat_link = webqtlConfig.UCSC_REFSEQ % (
                        'rn7', kgId, chr, transcript_start, transcript_end)

            if self.this_trait.geneid and (self.dataset.group.species == "mouse" or self.dataset.group.species == "rat" or self.dataset.group.species == "human"):
                self.biogps_link = webqtlConfig.BIOGPS_URL % (
                    self.dataset.group.species, self.this_trait.geneid)
                self.gemma_link = webqtlConfig.GEMMA_URL % self.this_trait.geneid

                if self.dataset.group.species == "human":
                    self.aba_link = webqtlConfig.ABA_URL % self.this_trait.geneid

    def build_correlation_tools(self):
        if self.temp_trait == True:
            this_group = self.temp_group
        else:
            this_group = self.dataset.group.name

        # We're checking a string here!
        assert isinstance(this_group, str), "We need a string type thing here"
        if this_group[:3] == 'BXD' and this_group not in webqtlConfig.BXD_GROUP_EXCEPTIONS:
            this_group = 'BXD'

        if this_group:
            if self.temp_trait == True:
                dataset_menu = data_set.datasets(this_group)
            else:
                dataset_menu = data_set.datasets(
                    this_group, self.dataset.group)
            dataset_menu_selected = None
            if len(dataset_menu):
                if self.dataset:
                    dataset_menu_selected = self.dataset.name

            return_results_menu = (100, 200, 500, 1000,
                                   2000, 5000, 10000, 15000, 20000)
            return_results_menu_selected = 500

            self.corr_tools = dict(dataset_menu=dataset_menu,
                                   dataset_menu_selected=dataset_menu_selected,
                                   return_results_menu=return_results_menu,
                                   return_results_menu_selected=return_results_menu_selected,)

    def make_sample_lists(self):

        all_samples_ordered = self.dataset.group.all_samples_ordered()

        parent_f1_samples = []
        if self.dataset.group.parlist and self.dataset.group.f1list:
            parent_f1_samples = self.dataset.group.parlist + self.dataset.group.f1list

        primary_sample_names = list(all_samples_ordered)

        if not self.temp_trait:
            other_sample_names = []

            for sample in list(self.this_trait.data.keys()):
                if (self.this_trait.data[sample].name2 != self.this_trait.data[sample].name):
                    if ((self.this_trait.data[sample].name2 in primary_sample_names)
                            and (self.this_trait.data[sample].name not in primary_sample_names)):
                        primary_sample_names.append(
                            self.this_trait.data[sample].name)
                        primary_sample_names.remove(
                            self.this_trait.data[sample].name2)

                all_samples_set = set(all_samples_ordered)
                if sample not in all_samples_set:
                    all_samples_ordered.append(sample)
                    other_sample_names.append(sample)

            # CFW is here because the .geno file doesn't properly
            # contain its full list of samples. This should probably
            # be fixed.
            if self.dataset.group.species == "human" or (set(primary_sample_names) == set(parent_f1_samples)) or self.dataset.group.name == "CFW":
                primary_sample_names += other_sample_names
                other_sample_names = []

            if other_sample_names:
                primary_header = "%s Only" % (self.dataset.group.name)
            else:
                primary_header = "Samples"

            primary_samples = SampleList(dataset=self.dataset,
                                         sample_names=primary_sample_names,
                                         this_trait=self.this_trait,
                                         sample_group_type='primary',
                                         header=primary_header)

            # if other_sample_names and self.dataset.group.species !=
            # "human" and self.dataset.group.name != "CFW":
            if len(other_sample_names) > 0:
                other_sample_names.sort()  # Sort other samples
                other_samples = SampleList(dataset=self.dataset,
                                           sample_names=other_sample_names,
                                           this_trait=self.this_trait,
                                           sample_group_type='other',
                                           header="Other")

                self.sample_groups = (primary_samples, other_samples)
            else:
                self.sample_groups = (primary_samples,)
        else:
            primary_samples = SampleList(dataset=self.dataset,
                                         sample_names=primary_sample_names,
                                         this_trait=self.trait_vals,
                                         sample_group_type='primary',
                                         header="%s Only" % (self.dataset.group.name))
            self.sample_groups = (primary_samples,)
        self.primary_sample_names = primary_sample_names
        self.dataset.group.allsamples = all_samples_ordered


def get_trait_vals(sample_list):
    trait_vals = []
    for sample in sample_list:
        try:
            trait_vals.append(float(sample.value))
        except:
            continue

    return trait_vals

def get_max_digits(trait_vals):
    def __max_digits__(these_vals):
        if not bool(these_vals):
            return None
        return len(str(max(these_vals))) - 1

    return [__max_digits__(val) for val in trait_vals], all([val.is_integer() for val in sum(trait_vals, [])])

def normf(trait_vals):
    ranked_vals = ss.rankdata(trait_vals)
    p_list = []
    for i, val in enumerate(trait_vals):
        p_list.append(((i + 1) - 0.5) / len(trait_vals))

    z = ss.norm.ppf(p_list)

    normed_vals = []
    for rank in ranked_vals:
        normed_vals.append("%0.3f" % z[int(rank) - 1])

    return normed_vals

def quantile_normalize_vals(sample_groups, trait_vals):
    qnorm_by_group = []
    for i, sample_type in enumerate(sample_groups):
        qnorm_vals = normf(trait_vals[i])
        qnorm_vals_with_x = []
        counter = 0
        for sample in sample_type.sample_list:
            if sample.display_value == "x":
                qnorm_vals_with_x.append("x")
            else:
                qnorm_vals_with_x.append(qnorm_vals[counter])
                counter += 1

        qnorm_by_group.append(qnorm_vals_with_x)

    return qnorm_by_group


def get_z_scores(sample_groups, trait_vals):
    zscore_by_group = []
    for i, sample_type in enumerate(sample_groups):
        zscores = ss.mstats.zscore(np.array(trait_vals[i])).tolist()
        zscores_with_x = []
        counter = 0
        for sample in sample_type.sample_list:
            if sample.display_value == "x":
                zscores_with_x.append("x")
            else:
                zscores_with_x.append("%0.3f" % zscores[counter])
                counter += 1

        zscore_by_group.append(zscores_with_x)

    return zscore_by_group


def get_nearest_marker(this_trait, this_db):
    this_chr = this_trait.locus_chr
    this_mb = this_trait.locus_mb
    # One option is to take flanking markers, another is to take the
    # two (or one) closest
    with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor:
        cursor.execute(
            "SELECT Geno.Name FROM Geno, GenoXRef, "
            "GenoFreeze WHERE Geno.Chr = %s AND "
            "GenoXRef.GenoId = Geno.Id AND "
            "GenoFreeze.Id = GenoXRef.GenoFreezeId "
            "AND GenoFreeze.Name = %s ORDER BY "
            "ABS( Geno.Mb - %s) LIMIT 1",
            (this_chr, f"{this_db.group.name}Geno", this_mb,)
        )
        if result := cursor.fetchall():
            return result[0][0]
        return ""


def get_table_widths(sample_groups, sample_column_width, has_num_cases=False):
    stats_table_width = 250
    if len(sample_groups) > 1:
        stats_table_width = 450

    trait_table_width = 300 + sample_column_width
    if sample_groups[0].se_exists:
        trait_table_width += 80
    if has_num_cases:
        trait_table_width += 80
    trait_table_width += len(sample_groups[0].attributes) * 88

    return stats_table_width, trait_table_width


def has_num_cases(this_trait):
    has_n = False
    if this_trait.dataset.type != "ProbeSet" and this_trait.dataset.type != "Geno":
        for name, sample in list(this_trait.data.items()):
            if sample.num_cases and sample.num_cases != "1":
                has_n = True
                break

    return has_n


def get_trait_units(this_trait):
    unit_type = ""
    inside_brackets = False
    if this_trait.description_fmt:
        if ("[" in this_trait.description_fmt) and ("]" in this_trait.description_fmt):
            for i in this_trait.description_fmt:
                if inside_brackets:
                    if i != "]":
                        unit_type += i
                    else:
                        inside_brackets = False
                if i == "[":
                    inside_brackets = True

    if unit_type == "":
        unit_type = "value"

    return unit_type


def check_if_attr_exists(the_trait, id_type):
    if hasattr(the_trait, id_type):
        if getattr(the_trait, id_type) == None or getattr(the_trait, id_type) == "":
            return False
        else:
            return True
    else:
        return False


def get_ncbi_summary(this_trait):
    if check_if_attr_exists(this_trait, 'geneid'):
        # ZS: Need to switch this try/except to something that checks
        # the output later
        try:
            response = requests.get(
                "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=gene&id=%s&retmode=json" % this_trait.geneid)
            summary = json.loads(response.content)[
                'result'][this_trait.geneid]['summary']
            return summary
        except:
            return None
    else:
        return None


def get_categorical_variables(this_trait, sample_list) -> list:
    categorical_var_list = []

    if len(sample_list.attributes) > 0:
        for attribute in sample_list.attributes:
            if len(sample_list.attributes[attribute].distinct_values) < 10:
                categorical_var_list.append(str(sample_list.attributes[attribute].id))

    return categorical_var_list

def get_numerical_variables(this_trait, sample_list) -> list:
    numerical_var_list = []

    if len(sample_list.attributes) > 0:
        for attribute in sample_list.attributes:
            all_numeric = True
            all_none = True
            for attr_val in sample_list.attributes[attribute].distinct_values:
                if not attr_val:
                    continue
                try:
                    val_as_float = float(attr_val)
                    all_none = False
                except:
                    all_numeric = False
                    break
            if all_numeric and not all_none:
                numerical_var_list.append(sample_list.attributes[attribute].name)

    return numerical_var_list

def get_genotype_scales(genofiles):
    geno_scales = {}
    if isinstance(genofiles, list):
        for the_file in genofiles:
            file_location = the_file['location']
            geno_scales[file_location] = get_scales_from_genofile(
                file_location)
    else:
        geno_scales[genofiles] = get_scales_from_genofile(genofiles)

    return geno_scales


def get_scales_from_genofile(file_location):
    geno_path = locate_ignore_error(file_location, 'genotype')
    # ZS: This is just to allow the code to run when
    if not geno_path:
        return [["physic", "Mb"]]
    cm_and_mb_cols_exist = True
    cm_column = None
    mb_column = None
    with open(geno_path, "r") as geno_fh:
        for i, line in enumerate(geno_fh):
            if line[0] == "#" or line[0] == "@":
                # ZS: If the scale is made explicit in the metadata,
                # use that
                if "@scale" in line:
                    scale = line.split(":")[1].strip()
                    if scale == "morgan":
                        return [["morgan", "cM"]]
                    else:
                        return [["physic", "Mb"]]
                else:
                    continue
            if line[:3] == "Chr":
                first_marker_line = i + 1
                if line.split("\t")[2].strip() == "cM":
                    cm_column = 2
                elif line.split("\t")[3].strip() == "cM":
                    cm_column = 3
                if line.split("\t")[2].strip() == "Mb":
                    mb_column = 2
                elif line.split("\t")[3].strip() == "Mb":
                    mb_column = 3
                break

        # ZS: This attempts to check whether the cM and Mb columns are
        # 'real', since some .geno files have one column be a copy of
        # the other column, or have one column that is all 0s
        cm_all_zero = True
        mb_all_zero = True
        cm_mb_all_equal = True
        for i, line in enumerate(geno_fh):
            # ZS: I'm assuming there won't be more than 10 markers
            # where the position is listed as 0
            if first_marker_line <= i < first_marker_line + 10:
                if cm_column:
                    cm_val = line.split("\t")[cm_column].strip()
                    if cm_val != "0":
                        cm_all_zero = False
                if mb_column:
                    mb_val = line.split("\t")[mb_column].strip()
                    if mb_val != "0":
                        mb_all_zero = False
                if cm_column and mb_column:
                    if cm_val != mb_val:
                        cm_mb_all_equal = False
            else:
                if i > first_marker_line + 10:
                    break

    # ZS: This assumes that both won't be all zero, since if that's
    # the case mapping shouldn't be an option to begin with
    if mb_all_zero:
        return [["morgan", "cM"]]
    elif cm_mb_all_equal:
        return [["physic", "Mb"]]
    elif cm_and_mb_cols_exist:
        return [["physic", "Mb"], ["morgan", "cM"]]
    else:
        return [["physic", "Mb"]]



def get_diff_of_vals(new_vals: Dict, trait_id: str) -> Dict:
    """ Get the diff between current sample values and the values in the DB

    Given a dict of the changed values and the trait/dataset ID, return a Dict
    with keys corresponding to each sample with a changed value and a value
    that is a dict with keys for the old_value and new_value

    """

    trait_name = trait_id.split(":")[0]
    dataset_name = trait_id.split(":")[1]
    trait_ob = create_trait(name=trait_name, dataset_name=dataset_name)

    old_vals = {sample : trait_ob.data[sample].value for sample in trait_ob.data}

    shared_samples = set.union(set(new_vals.keys()), set(old_vals.keys()))

    diff_dict = {}
    for sample in shared_samples:
        try:
            new_val = round(float(new_vals[sample]), 3)
        except:
            new_val = "x"
        try:
            old_val = round(float(old_vals[sample]), 3)
        except:
            old_val = "x"

        if new_val != old_val:
            diff_dict[sample] = {
                "new_val": new_val,
                "old_val": old_val
            }

    return diff_dict