1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
import uuid
from math import *
import requests
import unicodedata
from urllib.parse import urlencode, urljoin
import re
import json
from pymonad.maybe import Just, Maybe
from pymonad.tools import curry
from flask import g
from gn3.monads import MonadicDict
from gn2.base.data_set import create_dataset
from gn2.base.webqtlConfig import PUBMEDLINK_URL
from gn2.wqflask import parser
from gn2.wqflask import do_search
from gn2.wqflask.database import database_connection
from gn2.utility.authentication_tools import check_resource_availability
from gn2.utility.hmac import hmac_creation
from gn2.utility.tools import get_setting, GN2_BASE_URL, GN3_LOCAL_URL
from gn2.utility.type_checking import is_str
MAX_SEARCH_RESULTS = 20000 # Max number of search results, passed to Xapian search
class SearchResultPage:
#maxReturn = 3000
def __init__(self, kw):
"""
This class gets invoked after hitting submit on the main menu (in
views.py).
"""
###########################################
# Names and IDs of group / F2 set
###########################################
self.uc_id = uuid.uuid4()
self.go_term = None
self.search_type = kw['search_type']
if kw['search_terms_or']:
self.and_or = "or"
self.search_terms = kw['search_terms_or']
else:
self.and_or = "and"
self.search_terms = kw['search_terms_and']
search = self.search_terms
self.original_search_string = self.search_terms
# check for dodgy search terms
rx = re.compile(
r'.*\W(href|http|sql|select|update)\W.*', re.IGNORECASE)
if rx.match(search):
self.search_term_exists = False
return
else:
self.search_term_exists = True
self.results = []
max_result_count = 100000 # max number of results to display
type = kw.get('type')
if type == "Phenotypes": # split datatype on type field
max_result_count = 50000
dataset_type = "Publish"
elif type == "Genotypes":
dataset_type = "Geno"
else:
dataset_type = "ProbeSet" # ProbeSet is default
assert(is_str(kw.get('dataset')))
self.dataset = create_dataset(kw['dataset'], dataset_type)
# I don't like using try/except, but it seems like the easiest way to account for all possible bad searches here
try:
self.search()
except:
self.search_term_exists = False
self.too_many_results = False
if self.search_term_exists:
if len(self.results) > max_result_count:
self.trait_list = []
self.too_many_results = True
else:
self.gen_search_result()
def gen_search_result(self, search_type="sql"):
"""
Get the info displayed in the search result table from the set of results computed in
the "search" function
"""
trait_list = []
# result_set represents the results for each search term; a search of
# "shh grin2b" would have two sets of results, one for each term
if self.dataset.type == "ProbeSet":
self.header_data_names = ['index', 'display_name', 'symbol', 'description', 'location', 'mean', 'lrs_score', 'lrs_location', 'additive']
elif self.dataset.type == "Publish":
self.header_data_names = ['index', 'display_name', 'description', 'mean', 'authors', 'pubmed_text', 'lrs_score', 'lrs_location', 'additive']
elif self.dataset.type == "Geno":
self.header_data_names = ['index', 'display_name', 'location']
for index, result in enumerate(self.results):
if not result:
continue
if self.search_type == "xapian":
# These four lines are borrowed from gsearch.py; probably need to put them somewhere else to avoid duplicated code
chr_mb = curry(2, lambda chr, mb: f"Chr{chr}: {mb:.6f}")
format3f = lambda x: f"{x:.3f}"
hmac = curry(3, lambda trait_name, dataset, data_hmac: f"{trait_name}:{dataset}:{data_hmac}")
convert_lod = lambda x: x / 4.61
trait = MonadicDict(result)
trait["index"] = Just(index)
trait["display_name"] = trait["name"]
trait["location"] = (Maybe.apply(chr_mb)
.to_arguments(trait.pop("chr"), trait.pop("mb")))
trait["lod_score"] = trait.pop("lrs").map(convert_lod).map(format3f)
trait["additive"] = trait["additive"].map(format3f)
trait["mean"] = trait["mean"].map(format3f)
trait["lrs_location"] = (Maybe.apply(chr_mb)
.to_arguments(trait.pop("geno_chr"), trait.pop("geno_mb")))
if self.dataset.type == "ProbeSet":
trait["hmac"] = (Maybe.apply(hmac)
.to_arguments(trait['name'], trait['dataset'], Just(hmac_creation(f"{trait['name']}:{trait['dataset']}"))))
elif self.dataset.type == "Publish":
inbredsetcode = trait.pop("inbredsetcode")
if inbredsetcode.map(len) == Just(3):
trait["display_name"] = (Maybe.apply(
curry(2, lambda inbredsetcode, name: f"{inbredsetcode}_{name}"))
.to_arguments(inbredsetcode, trait["name"]))
trait["hmac"] = (Maybe.apply(hmac)
.to_arguments(trait['name'], trait['dataset'], Just(hmac_creation(f"{trait['name']}:{trait['dataset']}"))))
trait["authors_display"] = (trait.pop("authors").map(
lambda authors:
", ".join(authors[:2] + ["et al."] if len(authors) >=2 else authors)))
trait["pubmed_text"] = trait["year"].map(str)
trait_list.append(trait.data)
# if self.dataset.type == "ProbeSet":
# trait_dict['display_name'] = result['name']
# trait_dict['hmac'] = hmac.data_hmac('{}:{}'.format(trait_dict['display_name'], trait_dict['dataset']))
# trait_dict['symbol'] = "N/A" if not result['symbol'] else result['symbol'].strip()
# description_text = ""
# if result['description']:
# description_text = unicodedata.normalize("NFKD", result['description'].decode('latin1'))
#
# target_string = None # Will change this one the probe_target_description values are indexed
#
# description_display = description_text if target_string is None or str(target_string) == "" else description_text + "; " + str(target_string).strip()
# trait_dict['description'] = description_display
#
# trait_dict['location'] = "N/A"
# if result['chr'] and result['chr'] != "" and result['chr'] != "Un" and result['mb'] and result['mb'] != 0:
# trait_dict['location'] = f"Chr{result['chr']}: {float(result['mb']):.6f}"
#
# trait_dict['mean'] = "N/A" if not result['mean'] else f"{result['mean']:.3f}"
# trait_dict['additive'] = "N/A" if not result['additive']
else:
trait_dict = {}
trait_dict['index'] = index + 1
trait_dict['dataset'] = self.dataset.name
if self.dataset.type == "ProbeSet":
trait_dict['display_name'] = result[2]
trait_dict['hmac'] = hmac.data_hmac('{}:{}'.format(trait_dict['display_name'], trait_dict['dataset']))
trait_dict['symbol'] = "N/A" if result[3] is None else result[3].strip()
description_text = ""
if result[4] is not None and str(result[4]) != "":
description_text = unicodedata.normalize("NFKD", result[4].decode('latin1'))
target_string = result[5].decode('utf-8') if result[5] else ""
description_display = description_text if target_string is None or str(target_string) == "" else description_text + "; " + str(target_string).strip()
trait_dict['description'] = description_display
trait_dict['location'] = "N/A"
if (result[6] is not None) and (result[6] != "") and (result[6] != "Un") and (result[7] is not None) and (result[7] != 0):
trait_dict['location'] = f"Chr{result[6]}: {float(result[7]):.6f}"
trait_dict['mean'] = "N/A" if result[8] is None or result[8] == "" else f"{result[8]:.3f}"
trait_dict['additive'] = "N/A" if result[12] is None or result[12] == "" else f"{result[12]:.3f}"
trait_dict['lod_score'] = "N/A" if result[9] is None or result[9] == "" else f"{float(result[9]) / 4.61:.1f}"
trait_dict['lrs_location'] = "N/A" if result[13] is None or result[13] == "" or result[14] is None else f"Chr{result[13]}: {float(result[14]):.6f}"
elif self.dataset.type == "Geno":
trait_dict['display_name'] = str(result[0])
trait_dict['hmac'] = hmac.data_hmac('{}:{}'.format(trait_dict['display_name'], trait_dict['dataset']))
trait_dict['location'] = "N/A"
if (result[4] != "NULL" and result[4] != "") and (result[5] != 0):
trait_dict['location'] = f"Chr{result[4]}: {float(result[5]):.6f}"
elif self.dataset.type == "Publish":
# Check permissions on a trait-by-trait basis for phenotype traits
trait_dict['name'] = trait_dict['display_name'] = str(result[0])
trait_dict['hmac'] = hmac.data_hmac('{}:{}'.format(trait_dict['name'], trait_dict['dataset']))
permissions = check_resource_availability(
self.dataset, g.user_session.user_id, trait_dict['display_name'])
if not any(x in permissions['data'] for x in ["view", "edit"]):
continue
if result[10]:
trait_dict['display_name'] = str(result[10]) + "_" + str(result[0])
trait_dict['description'] = "N/A"
trait_dict['pubmed_id'] = "N/A"
trait_dict['pubmed_link'] = "N/A"
trait_dict['pubmed_text'] = "N/A"
trait_dict['mean'] = "N/A"
trait_dict['additive'] = "N/A"
pre_pub_description = "N/A" if result[1] is None else result[1].strip()
post_pub_description = "N/A" if result[2] is None else result[2].strip()
if result[5] != "NULL" and result[5] != None:
trait_dict['pubmed_id'] = result[5]
trait_dict['pubmed_link'] = PUBMEDLINK_URL % trait_dict['pubmed_id']
trait_dict['description'] = post_pub_description
else:
trait_dict['description'] = pre_pub_description
if result[4].isdigit():
trait_dict['pubmed_text'] = result[4]
trait_dict['authors'] = result[3]
trait_dict['authors_display'] = trait_dict['authors']
author_list = trait_dict['authors'].split(",")
if len(author_list) >= 2:
trait_dict['authors_display'] = (",").join(author_list[:2]) + ", et al."
if result[6] != "" and result[6] != None:
trait_dict['mean'] = f"{result[6]:.3f}"
try:
trait_dict['lod_score'] = f"{float(result[7]) / 4.61:.1f}"
except:
trait_dict['lod_score'] = "N/A"
try:
trait_dict['lrs_location'] = f"Chr{result[11]}: {float(result[12]):.6f}"
except:
trait_dict['lrs_location'] = "N/A"
trait_dict['additive'] = "N/A" if not result[8] else f"{result[8]:.3f}"
trait_dict['trait_info_str'] = trait_info_str(trait_dict, self.dataset.type)
# Convert any bytes in dict to a normal utf-8 string
for key in trait_dict.keys():
if isinstance(trait_dict[key], bytes):
try:
trait_dict[key] = trait_dict[key].decode('utf-8')
except UnicodeDecodeError:
trait_dict[key] = trait_dict[key].decode('latin-1')
trait_list.append(trait_dict)
if self.results:
self.max_widths = {}
for i, trait in enumerate(trait_list):
for key in trait.keys():
if key == "authors":
authors_string = ",".join(str(trait[key]).split(",")[:2]) + ", et al."
self.max_widths[key] = max(len(authors_string), self.max_widths[key]) if key in self.max_widths else len(str(authors_string))
elif key == "symbol":
self.max_widths[key] = len(trait[key])
if len(trait[key]) > 20:
self.max_widths[key] = 20
else:
self.max_widths[key] = max(len(str(trait[key])), self.max_widths[key]) if key in self.max_widths else len(str(trait[key]))
self.wide_columns_exist = False
if self.dataset.type == "Publish":
if (self.max_widths['display_name'] > 25 or self.max_widths['description'] > 100 or self.max_widths['authors']> 80):
self.wide_columns_exist = True
if self.dataset.type == "ProbeSet":
if (self.max_widths['display_name'] > 25 or self.max_widths['symbol'] > 25 or self.max_widths['description'] > 100):
self.wide_columns_exist = True
self.trait_list = trait_list
def search(self):
"""
This function sets up the actual search query in the form of a SQL statement and executes
"""
self.search_terms = parser.parse(self.search_terms)
if self.search_type == "xapian":
self.results = requests.get(generate_xapian_request(self.dataset, self.search_terms, self.and_or)).json()
else:
combined_from_clause = ""
combined_where_clause = ""
# The same table can't be referenced twice in the from clause
previous_from_clauses = []
for i, a_search in enumerate(self.search_terms):
if a_search['key'] == "GO":
self.go_term = a_search['search_term'][0]
gene_list = get_GO_symbols(a_search)
self.search_terms += gene_list
continue
else:
the_search = self.get_search_ob(a_search)
if the_search != None:
if a_search['key'] == None and self.dataset.type == "ProbeSet":
alias_terms = get_alias_terms(a_search['search_term'][0], self.dataset.group.species)
alias_where_clauses = []
for alias_search in alias_terms:
alias_search_ob = self.get_search_ob(alias_search)
if alias_search_ob != None:
get_from_clause = getattr(
alias_search_ob, "get_from_clause", None)
if callable(get_from_clause):
from_clause = alias_search_ob.get_from_clause()
if from_clause in previous_from_clauses:
pass
else:
previous_from_clauses.append(from_clause)
combined_from_clause += from_clause
where_clause = alias_search_ob.get_alias_where_clause()
alias_where_clauses.append(where_clause)
get_from_clause = getattr(
the_search, "get_from_clause", None)
if callable(get_from_clause):
from_clause = the_search.get_from_clause()
if from_clause in previous_from_clauses:
pass
else:
previous_from_clauses.append(from_clause)
combined_from_clause += from_clause
where_clause = the_search.get_where_clause()
alias_where_clauses.append(where_clause)
combined_where_clause += "(" + " OR ".join(alias_where_clauses) + ")"
if (i + 1) < len(self.search_terms):
if self.and_or == "and":
combined_where_clause += "AND"
else:
combined_where_clause += "OR"
else:
get_from_clause = getattr(
the_search, "get_from_clause", None)
if callable(get_from_clause):
from_clause = the_search.get_from_clause()
if from_clause in previous_from_clauses:
pass
else:
previous_from_clauses.append(from_clause)
combined_from_clause += from_clause
where_clause = the_search.get_where_clause()
combined_where_clause += "(" + where_clause + ")"
if (i + 1) < len(self.search_terms):
if self.and_or == "and":
combined_where_clause += "AND"
else:
combined_where_clause += "OR"
else:
self.search_term_exists = False
if self.search_term_exists:
combined_where_clause = "(" + combined_where_clause + ")"
final_query = the_search.compile_final_query(
combined_from_clause, combined_where_clause)
results = the_search.execute(final_query)
self.results.extend(results)
if self.search_term_exists:
if the_search != None:
self.header_fields = the_search.header_fields
def get_search_ob(self, a_search):
search_term = a_search['search_term']
search_operator = a_search['separator']
search_type = {}
search_type['dataset_type'] = self.dataset.type
if a_search['key']:
search_type['key'] = a_search['key'].upper()
else:
search_type['key'] = None
search_ob = do_search.DoSearch.get_search(search_type)
if search_ob:
search_class = getattr(do_search, search_ob)
the_search = search_class(search_term,
search_operator,
self.dataset,
search_type['key']
)
return the_search
else:
return None
def trait_info_str(trait, dataset_type):
"""Provide a string representation for given trait"""
def __trait_desc(trt):
if dataset_type == "Geno":
return f"Marker: {trait['display_name']}"
return trait['description'] or "N/A"
def __symbol(trt):
if dataset_type == "ProbeSet":
return (trait['symbol'] or "N/A")[:20]
def __lrs(trt):
if dataset_type == "Geno":
return 0
else:
if trait['lod_score'] != "N/A":
return (
f"{float(trait['lod_score']):0.3f}" if float(trait['lod_score']) > 0
else f"{trait['lod_score']}")
else:
return "N/A"
def __lrs_location(trt):
if 'lrs_location' in trait:
return trait['lrs_location']
else:
return "N/A"
def __location(trt):
if 'location' in trait:
return trait['location']
else:
return None
def __mean(trt):
if 'mean' in trait:
return trait['mean']
else:
return 0
return "{}|||{}|||{}|||{}|||{}|||{}|||{}|||{}".format(
trait['display_name'], trait['dataset'], __trait_desc(trait), __symbol(trait),
__location(trait), __mean(trait), __lrs(trait), __lrs_location(trait))
def get_GO_symbols(a_search):
gene_list = None
with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as cursor:
cursor.execute("SELECT genes FROM GORef WHERE goterm=%s",
(f"{a_search['key']}:{a_search['search_term'][0]}",))
gene_list = cursor.fetchone()[0].strip().split()
new_terms = []
for gene in gene_list:
new_terms.append(dict(key=None, separator=None, search_term=[gene]))
return new_terms
def insert_newlines(string, every=64):
""" This is because it is seemingly impossible to change the width of the description column, so I'm just manually adding line breaks """
lines = []
for i in range(0, len(string), every):
lines.append(string[i:i + every])
return '\n'.join(lines)
def get_alias_terms(symbol, species):
if species == "mouse":
symbol_string = symbol.capitalize()
elif species == "human":
symbol_string = symbol.upper()
else:
return []
filtered_aliases = []
response = requests.get(
GN2_BASE_URL + "/gn3/gene/aliases/" + symbol_string)
if response:
alias_list = json.loads(response.content)
seen = set()
for item in alias_list:
if item in seen:
continue
else:
filtered_aliases.append(item)
seen.add(item)
alias_terms = []
for alias in filtered_aliases:
the_search_term = {'key': None,
'search_term': [alias],
'separator': None}
alias_terms.append(the_search_term)
return alias_terms
def generate_xapian_request(dataset, search_terms, and_or):
""" Generate the resquest to GN3 which queries Xapian """
match dataset.type:
case "ProbeSet":
search_type = "gene"
case "Publish":
search_type = "phenotype"
case "Geno":
search_type = "genotype"
case _: # This should never happen
raise ValueError(f"Dataset types should only be ProbeSet, Publish, or Geno, not '{dataset.type}'")
xapian_terms = f" {and_or.upper()} ".join([create_xapian_term(dataset, term) for term in search_terms])
return urljoin(GN3_LOCAL_URL, "/api/search?" + urlencode({"query": xapian_terms,
"type": search_type,
"per_page": MAX_SEARCH_RESULTS}))
def create_xapian_term(dataset, term):
""" Create Xapian term for each search term """
search_term = term['search_term']
xapian_term = f"dataset:{dataset.name.lower()} AND "
match term['key']:
case 'MEAN':
return xapian_term + f"mean:{search_term[0]}..{search_term[1]}"
case 'POSITION':
return xapian_term + f"chr:{search_term[0].lower().replace('chr', '')} AND position:{int(search_term[1])*10**6}..{int(search_term[2])*10**6}"
case 'AUTHOR':
return xapian_term + f"author:{search_term[0]}"
case 'LRS':
xapian_term += f"peak:{search_term[0]}..{search_term[1]}"
if len(term) == 5:
xapian_term += f"peakchr:{search_term[2].lower().replace('chr', '')} AND peakmb:{float(search_term[3])*10**6}..{float(search_term[4])*10**6}"
return xapian_term
case 'LOD': # Basically just LRS search but all values are multiplied by 4.61
xapian_term += f"peak:{float(search_term[0]) * 4.61}..{float(search_term[1]) * 4.61}"
if len(term) == 5:
xapian_term += f"peakchr:{search_term[2].lower().replace('chr', '')} AND "
xapian_term += f"peakmb:{float(search_term[3]) * 4.61}..{float(search_term[4]) * 4.61}"
return xapian_term
case None:
return xapian_term + f"{search_term[0]}"
|