aboutsummaryrefslogtreecommitdiff
path: root/gn2/wqflask/network_graph/network_graph.py
blob: d60d50ffc95fd9a6832739a3e3b63523ba28b467 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Dr. Robert W. Williams at rwilliams@uthsc.edu
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)

import scipy
import simplejson as json

from gn2.base.trait import create_trait
from gn2.base import data_set
from gn2.utility import helper_functions
from gn2.utility import corr_result_helpers
from gn2.utility.tools import GN2_BRANCH_URL


class NetworkGraph:

    def __init__(self, start_vars):
        trait_db_list = [trait.strip()
                         for trait in start_vars['trait_list'].split(',')]

        helper_functions.get_trait_db_obs(self, trait_db_list)

        self.all_sample_list = []
        self.traits = []
        for trait_db in self.trait_list:
            this_trait = trait_db[0]
            self.traits.append(this_trait)
            this_sample_data = this_trait.data

            for sample in this_sample_data:
                if sample not in self.all_sample_list:
                    self.all_sample_list.append(sample)

        self.sample_data = []
        for trait_db in self.trait_list:
            this_trait = trait_db[0]
            this_sample_data = this_trait.data

            this_trait_vals = []
            for sample in self.all_sample_list:
                if sample in this_sample_data:
                    this_trait_vals.append(this_sample_data[sample].value)
                else:
                    this_trait_vals.append('')
            self.sample_data.append(this_trait_vals)

        # ZS: Variable set to the lowest overlapping samples in order to notify user, or 8, whichever is lower (since 8 is when we want to display warning)
        self.lowest_overlap = 8

        self.nodes_list = []
        self.edges_list = []
        for trait_db in self.trait_list:
            this_trait = trait_db[0]
            this_db = trait_db[1]

            this_db_samples = this_db.group.all_samples_ordered()
            this_sample_data = this_trait.data

            corr_result_row = []
            is_spearman = False  # ZS: To determine if it's above or below the diagonal

            max_corr = 0  # ZS: Used to determine whether node should be hidden when correlation coefficient slider is used

            for target in self.trait_list:
                target_trait = target[0]
                target_db = target[1]

                if str(this_trait) == str(target_trait) and str(this_db) == str(target_db):
                    continue

                target_samples = target_db.group.all_samples_ordered()

                target_sample_data = target_trait.data

                this_trait_vals = []
                target_vals = []
                for index, sample in enumerate(target_samples):

                    if (sample in this_sample_data) and (sample in target_sample_data):
                        sample_value = this_sample_data[sample].value
                        target_sample_value = target_sample_data[sample].value
                        this_trait_vals.append(sample_value)
                        target_vals.append(target_sample_value)

                this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(
                    this_trait_vals, target_vals)

                if num_overlap < self.lowest_overlap:
                    self.lowest_overlap = num_overlap
                if num_overlap < 2:
                    continue
                else:
                    pearson_r, pearson_p = scipy.stats.pearsonr(
                        this_trait_vals, target_vals)
                    if is_spearman == False:
                        sample_r, sample_p = pearson_r, pearson_p
                        if sample_r == 1:
                            continue
                    else:
                        sample_r, sample_p = scipy.stats.spearmanr(
                            this_trait_vals, target_vals)

                    if -1 <= sample_r < -0.7:
                        color = "#0000ff"
                        width = 3
                    elif -0.7 <= sample_r < -0.5:
                        color = "#00ff00"
                        width = 2
                    elif -0.5 <= sample_r < 0:
                        color = "#000000"
                        width = 0.5
                    elif 0 <= sample_r < 0.5:
                        color = "#ffc0cb"
                        width = 0.5
                    elif 0.5 <= sample_r < 0.7:
                        color = "#ffa500"
                        width = 2
                    elif 0.7 <= sample_r <= 1:
                        color = "#ff0000"
                        width = 3
                    else:
                        color = "#000000"
                        width = 0

                    if abs(sample_r) > max_corr:
                        max_corr = abs(sample_r)

                    edge_data = {'id': f"{str(this_trait.name)}:{str(this_trait.dataset.name)}" + '_to_' + f"{str(target_trait.name)}:{str(target_trait.dataset.name)}",
                                 'source': str(this_trait.name) + ":" + str(this_trait.dataset.name),
                                 'target': str(target_trait.name) + ":" + str(target_trait.dataset.name),
                                 'correlation': round(sample_r, 3),
                                 'abs_corr': abs(round(sample_r, 3)),
                                 'p_value': round(sample_p, 3),
                                 'overlap': num_overlap,
                                 'color': color,
                                 'width': width}

                    edge_dict = {'data': edge_data}

                    self.edges_list.append(edge_dict)

            if trait_db[1].type == "ProbeSet":
                node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
                                      'label': this_trait.symbol,
                                      'symbol': this_trait.symbol,
                                      'geneid': this_trait.geneid,
                                      'omim': this_trait.omim,
                                      'max_corr': max_corr}}
            elif trait_db[1].type == "Publish":
                node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
                                      'label': this_trait.name,
                                      'max_corr': max_corr}}
            else:
                node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
                                      'label': this_trait.name,
                                      'max_corr': max_corr}}
            self.nodes_list.append(node_dict)

        self.elements = json.dumps(self.nodes_list + self.edges_list)
        self.gn2_url = GN2_BRANCH_URL

        groups = []
        for sample in self.all_sample_list:
            groups.append(1)

        self.js_data = dict(traits=[trait.name for trait in self.traits],
                            groups=groups,
                            cols=list(range(len(self.traits))),
                            rows=list(range(len(self.traits))),
                            samples=self.all_sample_list,
                            sample_data=self.sample_data,
                            elements=self.elements,)