1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
|
from gn2.base.trait import GeneralTrait
from gn2.base import data_set # import create_dataset
from pprint import pformat as pf
import string
import math
from decimal import Decimal
import random
import sys
import datetime
import os
import collections
import uuid
import numpy as np
import pickle as pickle
import itertools
import simplejson as json
from redis import Redis
Redis = Redis()
from flask import Flask, g
from gn2.base.trait import GeneralTrait, create_trait
from gn2.base import data_set
from gn2.base import species
from gn2.base import webqtlConfig
from gn2.utility import webqtlUtil, helper_functions, hmac, Plot, Bunch, temp_data
from gn2.utility.redis_tools import get_redis_conn
from gn2.wqflask.database import database_connection
from gn2.wqflask.marker_regression import gemma_mapping, rqtl_mapping, qtlreaper_mapping, plink_mapping
from gn2.wqflask.show_trait.SampleList import SampleList
from gn2.utility.tools import locate, get_setting, locate_ignore_error, GEMMA_COMMAND, PLINK_COMMAND, TEMPDIR
from gn2.utility.external import shell
from gn2.base.webqtlConfig import TMPDIR, GENERATED_TEXT_DIR
Redis = get_redis_conn()
class RunMapping:
def __init__(self, start_vars, temp_uuid):
helper_functions.get_species_dataset_trait(self, start_vars)
# needed to pass temp_uuid to gn1 mapping code (marker_regression_gn1.py)
self.temp_uuid = temp_uuid
# Needed to zoom in or remap temp traits like PCA traits
if "temp_trait" in start_vars and start_vars['temp_trait'] != "False":
self.temp_trait = "True"
self.group = self.dataset.group.name
self.hash_of_inputs = start_vars['hash_of_inputs']
self.dataid = start_vars['dataid']
self.json_data = {}
self.json_data['lodnames'] = ['lod.hk']
# Sometimes a group may have a genofile that only includes a subset of samples
genofile_samplelist = []
if 'genofile' in start_vars:
if start_vars['genofile'] != "":
self.genofile_string = start_vars['genofile']
self.dataset.group.genofile = self.genofile_string.split(":")[
0]
genofile_samplelist = get_genofile_samplelist(self.dataset)
all_samples_ordered = self.dataset.group.all_samples_ordered()
self.vals = []
self.samples = []
self.sample_vals = start_vars['sample_vals']
self.vals_hash = start_vars['vals_hash']
sample_val_dict = json.loads(self.sample_vals)
samples = sample_val_dict.keys()
if (len(genofile_samplelist) != 0):
for sample in genofile_samplelist:
self.samples.append(sample)
if sample in samples:
self.vals.append(sample_val_dict[sample])
else:
self.vals.append("x")
else:
for sample in self.dataset.group.samplelist:
if sample in samples:
self.vals.append(sample_val_dict[sample])
self.samples.append(sample)
if 'n_samples' in start_vars:
self.n_samples = start_vars['n_samples']
else:
self.n_samples = len([val for val in self.vals if val != "x"])
self.mapping_method = start_vars['method']
if "results_path" in start_vars:
self.mapping_results_path = start_vars['results_path']
else:
mapping_results_filename = "_".join([self.dataset.group.name, self.mapping_method, self.vals_hash]).replace("/", "_")
self.mapping_results_path = "{}{}.csv".format(
webqtlConfig.GENERATED_IMAGE_DIR, mapping_results_filename)
self.pair_scan = False
self.manhattan_plot = False
if 'manhattan_plot' in start_vars:
if start_vars['manhattan_plot'].lower() != "false":
self.color_scheme = "alternating"
if "color_scheme" in start_vars:
self.color_scheme = start_vars['color_scheme']
if self.color_scheme == "single":
self.manhattan_single_color = start_vars['manhattan_single_color']
self.manhattan_plot = True
self.maf = start_vars['maf'] # Minor allele frequency
if "use_loco" in start_vars:
self.use_loco = start_vars['use_loco']
else:
self.use_loco = None
self.suggestive = ""
self.significant = ""
if 'transform' in start_vars:
self.transform = start_vars['transform']
else:
self.transform = ""
self.score_type = "LRS" # ZS: LRS or LOD
self.mapping_scale = "physic"
if "mapping_scale" in start_vars:
self.mapping_scale = start_vars['mapping_scale']
self.num_perm = 0
self.perm_output = []
self.bootstrap_results = []
self.covariates = start_vars['covariates'] if "covariates" in start_vars else ""
self.categorical_vars = []
self.geno_db_exists = False
# ZS: This is passed to GN1 code for single chr mapping
self.selected_chr = -1
if "selected_chr" in start_vars:
# ZS: Needs to be -1 if showing full map; there's probably a better way to fix this
if int(start_vars['selected_chr']) != -1:
self.selected_chr = int(start_vars['selected_chr']) + 1
else:
self.selected_chr = int(start_vars['selected_chr'])
if "startMb" in start_vars:
self.startMb = start_vars['startMb']
if "endMb" in start_vars:
self.endMb = start_vars['endMb']
if "graphWidth" in start_vars:
self.graphWidth = start_vars['graphWidth']
if "lrsMax" in start_vars:
self.lrsMax = start_vars['lrsMax']
if "haplotypeAnalystCheck" in start_vars:
self.haplotypeAnalystCheck = start_vars['haplotypeAnalystCheck']
if "startMb" in start_vars: # This is to ensure showGenes, Legend, etc are checked the first time you open the mapping page, since startMb will only not be set during the first load
if "permCheck" in start_vars:
self.permCheck = "ON"
else:
self.permCheck = False
self.num_perm = int(start_vars['num_perm'])
self.LRSCheck = start_vars['LRSCheck']
if "showSNP" in start_vars:
self.showSNP = start_vars['showSNP']
else:
self.showSNP = False
if "showHomology" in start_vars:
self.showHomology = start_vars['showHomology']
else:
self.showHomology = False
if "showGenes" in start_vars:
self.showGenes = start_vars['showGenes']
else:
self.showGenes = False
if "viewLegend" in start_vars:
self.viewLegend = start_vars['viewLegend']
else:
self.viewLegend = False
else:
try:
if int(start_vars['num_perm']) > 0:
self.num_perm = int(start_vars['num_perm'])
except:
self.num_perm = 0
if self.num_perm > 0:
self.permCheck = "ON"
else:
self.permCheck = False
self.showSNP = "ON"
self.showGenes = "ON"
self.viewLegend = "ON"
# self.dataset.group.get_markers()
if self.mapping_method == "gemma":
self.first_run = True
self.output_files = None
if 'output_files' in start_vars:
self.output_files = start_vars['output_files']
# ZS: check if first run so existing result files can be used if it isn't (for example zooming on a chromosome, etc)
if 'first_run' in start_vars:
self.first_run = False
self.score_type = "-logP"
self.manhattan_plot = True
if self.use_loco == "True":
marker_obs, self.output_files = gemma_mapping.run_gemma(
self.this_trait, self.dataset, self.samples, self.vals, self.covariates, self.use_loco, self.maf, self.first_run, self.output_files)
else:
marker_obs, self.output_files = gemma_mapping.run_gemma(
self.this_trait, self.dataset, self.samples, self.vals, self.covariates, self.use_loco, self.maf, self.first_run, self.output_files)
results = marker_obs
elif self.mapping_method == "rqtl_plink":
results = self.run_rqtl_plink()
elif self.mapping_method == "rqtl_geno":
self.perm_strata = []
if "perm_strata" in start_vars and "categorical_vars" in start_vars:
self.categorical_vars = start_vars["categorical_vars"].split(
",")
if len(self.categorical_vars) and start_vars["perm_strata"] == "True":
primary_samples = SampleList(dataset=self.dataset,
sample_names=self.samples,
this_trait=self.this_trait)
self.perm_strata = get_perm_strata(
self.this_trait, primary_samples, self.categorical_vars, self.samples)
self.score_type = "-logP"
self.control_marker = start_vars['control_marker']
self.do_control = start_vars['do_control']
if 'mapmethod_rqtl' in start_vars:
self.method = start_vars['mapmethod_rqtl']
else:
self.method = "em"
self.model = start_vars['mapmodel_rqtl']
self.pair_scan = False
if start_vars['pair_scan'] == "true":
self.pair_scan = True
if self.permCheck and self.num_perm > 0:
self.perm_output, self.suggestive, self.significant, results = rqtl_mapping.run_rqtl(
self.this_trait.name, self.vals, self.samples, self.dataset, self.pair_scan, self.mapping_scale, self.model, self.method, self.num_perm, self.perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.covariates)
else:
results = rqtl_mapping.run_rqtl(self.this_trait.name, self.vals, self.samples, self.dataset, self.pair_scan, self.mapping_scale, self.model, self.method,
self.num_perm, self.perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.covariates)
elif self.mapping_method == "reaper":
if "startMb" in start_vars: # ZS: Check if first time page loaded, so it can default to ON
if "additiveCheck" in start_vars:
self.additiveCheck = start_vars['additiveCheck']
else:
self.additiveCheck = False
if "bootCheck" in start_vars:
self.bootCheck = "ON"
else:
self.bootCheck = False
self.num_bootstrap = int(start_vars['num_bootstrap'])
else:
self.additiveCheck = "ON"
try:
if int(start_vars['num_bootstrap']) > 0:
self.bootCheck = "ON"
self.num_bootstrap = int(start_vars['num_bootstrap'])
else:
self.bootCheck = False
self.num_bootstrap = 0
except:
self.bootCheck = False
self.num_bootstrap = 0
self.control_marker = start_vars['control_marker']
self.do_control = start_vars['do_control']
self.first_run = True
self.output_files = None
# ZS: check if first run so existing result files can be used if it isn't (for example zooming on a chromosome, etc)
if 'first_run' in start_vars:
self.first_run = False
if 'output_files' in start_vars:
self.output_files = start_vars['output_files'].split(
",")
results, self.perm_output, self.suggestive, self.significant, self.bootstrap_results, self.output_files = qtlreaper_mapping.run_reaper(self.this_trait,
self.dataset,
self.samples,
self.vals,
self.json_data,
self.num_perm,
self.bootCheck,
self.num_bootstrap,
self.do_control,
self.control_marker,
self.manhattan_plot,
self.first_run,
self.output_files)
elif self.mapping_method == "plink":
self.score_type = "-logP"
self.manhattan_plot = True
results = plink_mapping.run_plink(
self.this_trait, self.dataset, self.species, self.vals, self.maf)
#results = self.run_plink()
self.no_results = False
if len(results) == 0:
self.no_results = True
else:
# Check if genotypes exist in the DB in order to create links for markers
self.geno_db_exists = geno_db_exists(self.dataset, results[0]['name'])
if self.pair_scan == True:
self.figure_data = results[0]
self.table_data = results[1]
else:
self.qtl_results = []
self.results_for_browser = []
self.annotations_for_browser = []
highest_chr = 1 # This is needed in order to convert the highest chr to X/Y
for marker in results:
marker['hmac'] = hmac.data_hmac('{}:{}'.format(marker['name'], self.dataset.group.name + "Geno"))
if 'Mb' in marker:
this_ps = marker['Mb'] * 1000000
else:
this_ps = marker['cM'] * 1000000
browser_marker = dict(
chr=str(marker['chr']),
rs=marker['name'],
ps=this_ps,
url="/show_trait?trait_id=" + \
marker['name'] + "&dataset=" + \
self.dataset.group.name + "Geno"
)
if self.geno_db_exists == "True":
annot_marker = dict(
name=str(marker['name']),
chr=str(marker['chr']),
rs=marker['name'],
pos=this_ps,
url="/show_trait?trait_id=" + \
marker['name'] + "&dataset=" + \
self.dataset.group.name + "Geno"
)
else:
annot_marker = dict(
name=str(marker['name']),
chr=str(marker['chr']),
rs=marker['name'],
pos=this_ps
)
if 'lrs_value' in marker and marker['lrs_value'] > 0:
browser_marker['p_wald'] = 10**- \
(marker['lrs_value'] / 4.61)
elif 'lod_score' in marker and marker['lod_score'] > 0:
browser_marker['p_wald'] = 10**-(marker['lod_score'])
else:
browser_marker['p_wald'] = 0
self.results_for_browser.append(browser_marker)
self.annotations_for_browser.append(annot_marker)
if str(marker['chr']) > '0' or str(marker['chr']) == "X" or str(marker['chr']) == "X/Y":
if str(marker['chr']) > str(highest_chr) or str(marker['chr']) == "X" or str(marker['chr']) == "X/Y":
highest_chr = marker['chr']
if ('lod_score' in marker.keys()) or ('lrs_value' in marker.keys()):
if 'Mb' in marker.keys():
marker['display_pos'] = "Chr" + \
str(marker['chr']) + ": " + \
"{:.6f}".format(marker['Mb'])
elif 'cM' in marker.keys():
marker['display_pos'] = "Chr" + \
str(marker['chr']) + ": " + \
"{:.3f}".format(marker['cM'])
else:
marker['display_pos'] = "N/A"
self.qtl_results.append(marker)
total_markers = len(self.qtl_results)
export_mapping_results(self.dataset, self.this_trait, self.qtl_results, self.mapping_results_path,
self.mapping_method, self.mapping_scale, self.score_type,
self.transform, self.covariates, self.n_samples, self.vals_hash)
if len(self.qtl_results) > 30000:
self.qtl_results = trim_markers_for_figure(
self.qtl_results)
self.results_for_browser = trim_markers_for_figure(
self.results_for_browser)
filtered_annotations = []
for marker in self.results_for_browser:
for annot_marker in self.annotations_for_browser:
if annot_marker['rs'] == marker['rs']:
filtered_annotations.append(annot_marker)
break
self.annotations_for_browser = filtered_annotations
browser_files = write_input_for_browser(
self.dataset, self.results_for_browser, self.annotations_for_browser)
else:
browser_files = write_input_for_browser(
self.dataset, self.results_for_browser, self.annotations_for_browser)
self.trimmed_markers = trim_markers_for_table(results)
chr_lengths = get_chr_lengths(
self.mapping_scale, self.mapping_method, self.dataset, self.qtl_results)
# ZS: For zooming into genome browser, need to pass chromosome name instead of number
if self.dataset.group.species == "mouse":
if self.selected_chr == 20:
this_chr = "X"
else:
this_chr = str(self.selected_chr)
elif self.dataset.group.species == "rat":
if self.selected_chr == 21:
this_chr = "X"
else:
this_chr = str(self.selected_chr)
else:
if self.selected_chr == 22:
this_chr = "X"
elif self.selected_chr == 23:
this_chr = "Y"
else:
this_chr = str(self.selected_chr)
if self.mapping_method != "gemma":
if self.score_type == "LRS":
significant_for_browser = self.significant / 4.61
else:
significant_for_browser = self.significant
self.js_data = dict(
#result_score_type = self.score_type,
#this_trait = self.this_trait.name,
#data_set = self.dataset.name,
#maf = self.maf,
#manhattan_plot = self.manhattan_plot,
#mapping_scale = self.mapping_scale,
#chromosomes = chromosome_mb_lengths,
#qtl_results = self.qtl_results,
categorical_vars=self.categorical_vars,
chr_lengths=chr_lengths,
num_perm=self.num_perm,
perm_results=self.perm_output,
significant=significant_for_browser,
browser_files=browser_files,
selected_chr=this_chr,
total_markers=total_markers
)
else:
self.js_data = dict(
chr_lengths=chr_lengths,
browser_files=browser_files,
selected_chr=this_chr,
total_markers=total_markers
)
def run_rqtl_plink(self):
# os.chdir("") never do this inside a webserver!!
output_filename = webqtlUtil.genRandStr("%s_%s_" % (
self.dataset.group.name, self.this_trait.name))
plink_mapping.gen_pheno_txt_file_plink(
self.this_trait, self.dataset, self.vals, pheno_filename=output_filename)
rqtl_command = './plink --noweb --ped %s.ped --no-fid --no-parents --no-sex --no-pheno --map %s.map --pheno %s/%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc ' % (
self.dataset.group.name, self.dataset.group.name, TMPDIR, plink_output_filename, self.this_trait.name, self.maf, TMPDIR, plink_output_filename)
os.system(rqtl_command)
count, p_values = self.parse_rqtl_output(plink_output_filename)
def identify_empty_samples(self):
no_val_samples = []
for sample_count, val in enumerate(self.vals):
if val == "x":
no_val_samples.append(sample_count)
return no_val_samples
def trim_genotypes(self, genotype_data, no_value_samples):
trimmed_genotype_data = []
for marker in genotype_data:
new_genotypes = []
for item_count, genotype in enumerate(marker):
if item_count in no_value_samples:
continue
try:
genotype = float(genotype)
except ValueError:
genotype = np.nan
pass
new_genotypes.append(genotype)
trimmed_genotype_data.append(new_genotypes)
return trimmed_genotype_data
def export_mapping_results(dataset, trait, markers, results_path, mapping_method, mapping_scale, score_type, transform, covariates, n_samples, vals_hash):
if mapping_scale == "physic":
scale_string = "Mb"
else:
scale_string = "cM"
with open(results_path, "w+") as output_file:
output_file.write(
"Time/Date: " + datetime.datetime.now().strftime("%x / %X") + "\n")
output_file.write(
"Population: " + dataset.group.species.title() + " " + dataset.group.name + "\n")
output_file.write("Data Set: " + dataset.fullname + "\n")
output_file.write("Trait: " + trait.display_name + "\n")
output_file.write("Trait Hash: " + vals_hash + "\n")
output_file.write("N Samples: " + str(n_samples) + "\n")
output_file.write("Mapping Tool: " + str(mapping_method) + "\n")
if len(transform) > 0:
transform_text = "Transform - "
if transform == "qnorm":
transform_text += "Quantile Normalized"
elif transform == "log2" or transform == "log10":
transform_text += transform.capitalize()
elif transform == "sqrt":
transform_text += "Square Root"
elif transform == "zscore":
transform_text += "Z-Score"
elif transform == "invert":
transform_text += "Invert +/-"
else:
transform_text = ""
output_file.write(transform_text + "\n")
if dataset.type == "ProbeSet":
if trait.symbol:
output_file.write("Gene Symbol: " + trait.symbol + "\n")
output_file.write("Location: " + str(trait.chr) + \
" @ " + str(trait.mb) + " Mb\n")
if len(covariates) > 0:
output_file.write("Cofactors (dataset - trait):\n")
for covariate in covariates.split(","):
trait_name = covariate.split(":")[0]
dataset_name = covariate.split(":")[1]
output_file.write(dataset_name + " - " + trait_name + "\n")
output_file.write("\n")
output_file.write("Name,Chr,")
if score_type.lower() == "-logP":
score_type = "-logP"
output_file.write(scale_string + "," + score_type)
if "additive" in list(markers[0].keys()):
output_file.write(",Additive")
if "dominance" in list(markers[0].keys()):
output_file.write(",Dominance")
output_file.write("\n")
for i, marker in enumerate(markers):
output_file.write(marker['name'] + "," + str(marker['chr']) + ",")
output_file.write(str(marker[scale_string]) + ",")
if score_type == "-logP":
output_file.write(str(marker['lod_score']))
else:
output_file.write(str(marker['lrs_value']))
if "additive" in list(marker.keys()):
output_file.write("," + str(marker['additive']))
if "dominance" in list(marker.keys()):
output_file.write("," + str(marker['dominance']))
if i < (len(markers) - 1):
output_file.write("\n")
def trim_markers_for_figure(markers):
if 'p_wald' in list(markers[0].keys()):
score_type = 'p_wald'
elif 'lod_score' in list(markers[0].keys()):
score_type = 'lod_score'
else:
score_type = 'lrs_value'
filtered_markers = []
low_counter = 0
med_counter = 0
high_counter = 0
for marker in markers:
if score_type == 'p_wald':
if marker[score_type] > 0.1:
if low_counter % 20 == 0:
filtered_markers.append(marker)
low_counter += 1
elif 0.1 >= marker[score_type] > 0.01:
if med_counter % 10 == 0:
filtered_markers.append(marker)
med_counter += 1
elif 0.01 >= marker[score_type] > 0.001:
if high_counter % 2 == 0:
filtered_markers.append(marker)
high_counter += 1
else:
filtered_markers.append(marker)
elif score_type == 'lod_score':
if marker[score_type] < 1:
if low_counter % 20 == 0:
filtered_markers.append(marker)
low_counter += 1
elif 1 <= marker[score_type] < 2:
if med_counter % 10 == 0:
filtered_markers.append(marker)
med_counter += 1
elif 2 <= marker[score_type] <= 3:
if high_counter % 2 == 0:
filtered_markers.append(marker)
high_counter += 1
else:
filtered_markers.append(marker)
else:
if marker[score_type] < 4.61:
if low_counter % 20 == 0:
filtered_markers.append(marker)
low_counter += 1
elif 4.61 <= marker[score_type] < (2 * 4.61):
if med_counter % 10 == 0:
filtered_markers.append(marker)
med_counter += 1
elif (2 * 4.61) <= marker[score_type] <= (3 * 4.61):
if high_counter % 2 == 0:
filtered_markers.append(marker)
high_counter += 1
else:
filtered_markers.append(marker)
return filtered_markers
def trim_markers_for_table(markers):
if 'lod_score' in list(markers[0].keys()):
sorted_markers = sorted(
markers, key=lambda k: k['lod_score'], reverse=True)
else:
sorted_markers = sorted(
markers, key=lambda k: k['lrs_value'], reverse=True)
#ZS: So we end up with a list of just 2000 markers
if len(sorted_markers) >= 25000:
trimmed_sorted_markers = sorted_markers[:25000]
return trimmed_sorted_markers
else:
return sorted_markers
def write_input_for_browser(this_dataset, gwas_results, annotations):
file_base = this_dataset.group.name + "_" + \
''.join(random.choice(string.ascii_uppercase + string.digits)
for _ in range(6))
gwas_filename = file_base + "_GWAS"
annot_filename = file_base + "_ANNOT"
gwas_path = "{}/gn2/".format(TEMPDIR) + gwas_filename
annot_path = "{}/gn2/".format(TEMPDIR) + annot_filename
with open(gwas_path + ".json", "w") as gwas_file, open(annot_path + ".json", "w") as annot_file:
gwas_file.write(json.dumps(gwas_results))
annot_file.write(json.dumps(annotations))
return [gwas_filename, annot_filename]
def geno_db_exists(this_dataset, first_marker):
"""
Check if genotypes are databased
This checks two things:
- A genotypes dataset exists for this group
- The first marker in the genotype file is in the genotypes dataset,
since there might be a mismatch between the file and databased markers
"""
geno_db_name = this_dataset.group.name + "Geno"
try:
geno_db = data_set.create_dataset(
dataset_name=geno_db_name, get_samplelist=False)
geno_trait = create_trait(name=first_marker, dataset_name=geno_db_name)
return "True"
except:
return "False"
def get_chr_lengths(mapping_scale, mapping_method, dataset, qtl_results):
chr_lengths = []
if mapping_scale == "physic":
with database_connection(get_setting("SQL_URI")) as conn, conn.cursor() as db_cursor:
for i, the_chr in enumerate(dataset.species.chromosomes.chromosomes(db_cursor)):
this_chr = {
"chr": dataset.species.chromosomes.chromosomes(db_cursor)[the_chr].name,
"size": str(dataset.species.chromosomes.chromosomes(db_cursor)[the_chr].length)
}
chr_lengths.append(this_chr)
else:
this_chr = 1
highest_pos = 0
for i, result in enumerate(qtl_results):
chr_as_num = 0
try:
chr_as_num = int(result['chr'])
except:
chr_as_num = 20
if chr_as_num > this_chr or i == (len(qtl_results) - 1):
if i == (len(qtl_results) - 1):
if mapping_method == "reaper":
highest_pos = float(result['cM']) * 1000000
else:
highest_pos = float(result['Mb']) * 1000000
chr_lengths.append(
{"chr": str(this_chr), "size": str(highest_pos)})
else:
chr_lengths.append(
{"chr": str(this_chr), "size": str(highest_pos)})
this_chr = chr_as_num
else:
if mapping_method == "reaper":
if float(result['cM']) > highest_pos:
highest_pos = float(result['cM']) * 1000000
else:
if float(result['Mb']) > highest_pos:
highest_pos = float(result['Mb']) * 1000000
return chr_lengths
def get_genofile_samplelist(dataset):
genofile_samplelist = []
genofile_json = dataset.group.get_genofiles()
for genofile in genofile_json:
if genofile['location'] == dataset.group.genofile and 'sample_list' in genofile:
genofile_samplelist = genofile['sample_list']
return genofile_samplelist
def get_perm_strata(this_trait, sample_list, categorical_vars, used_samples):
perm_strata_strings = []
for sample in used_samples:
if sample in list(sample_list.sample_attribute_values.keys()):
combined_string = ""
for var in categorical_vars:
if var in sample_list.sample_attribute_values[sample]:
combined_string += str(
sample_list.sample_attribute_values[sample][var])
else:
combined_string += "NA"
else:
combined_string = "NA"
perm_strata_strings.append(combined_string)
d = dict([(y, x + 1)
for x, y in enumerate(sorted(set(perm_strata_strings)))])
list_to_numbers = [d[x] for x in perm_strata_strings]
perm_strata = list_to_numbers
return perm_strata
|