aboutsummaryrefslogtreecommitdiff
path: root/gn2/wqflask/marker_regression/plink_mapping.py
blob: 7427717a12add8183c827f71791598ac8c57afed (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import string
import os

from gn2.base.webqtlConfig import TMPDIR
from gn2.utility import webqtlUtil
from gn2.utility.tools import flat_files, PLINK_COMMAND


def run_plink(this_trait, dataset, species, vals, maf):
    plink_output_filename = webqtlUtil.genRandStr(
        f"{dataset.group.name}_{this_trait.name}_")
    gen_pheno_txt_file(dataset, vals)

    plink_command = f"{PLINK_COMMAND}  --noweb --bfile {flat_files('mapping')}/{dataset.group.name} --no-pheno --no-fid --no-parents --no-sex --maf {maf} --out { TMPDIR}{plink_output_filename} --assoc "

    os.system(plink_command)

    count, p_values = parse_plink_output(plink_output_filename, species)

    dataset.group.markers.add_pvalues(p_values)

    return dataset.group.markers.markers


def gen_pheno_txt_file(this_dataset, vals):
    """Generates phenotype file for GEMMA/PLINK"""

    current_file_data = []
    with open(f"{flat_files('mapping')}/{this_dataset.group.name}.fam", "r") as outfile:
        for i, line in enumerate(outfile):
            split_line = line.split()
            current_file_data.append(split_line)

    with open(f"{flat_files('mapping')}/{this_dataset.group.name}.fam", "w") as outfile:
        for i, line in enumerate(current_file_data):
            if vals[i] == "x":
                this_val = -9
            else:
                this_val = vals[i]
            outfile.write("0 " + line[1] + " " + line[2] + " " + \
                          line[3] + " " + line[4] + " " + str(this_val) + "\n")


def gen_pheno_txt_file_plink(this_trait, dataset, vals, pheno_filename=''):
    ped_sample_list = get_samples_from_ped_file(dataset)
    output_file = open(f"{TMPDIR}{pheno_filename}.txt", "wb")
    header = f"FID\tIID\t{this_trait.name}\n"
    output_file.write(header)

    new_value_list = []

    # if valueDict does not include some strain, value will be set to -9999 as missing value
    for i, sample in enumerate(ped_sample_list):
        try:
            value = vals[i]
            value = str(value).replace('value=', '')
            value = value.strip()
        except:
            value = -9999

        new_value_list.append(value)

    new_line = ''
    for i, sample in enumerate(ped_sample_list):
        j = i + 1
        value = new_value_list[i]
        new_line += f"{sample}\t{sample}\t{value}\n"

        if j % 1000 == 0:
            output_file.write(newLine)
            new_line = ''

    if new_line:
        output_file.write(new_line)

    output_file.close()

# get strain name from ped file in order


def get_samples_from_ped_file(dataset):
    ped_file = open(f"{flat_files('mapping')}{dataset.group.name}.ped", "r")
    line = ped_file.readline()
    sample_list = []

    while line:
        lineList = line.strip().split('\t')
        lineList = [item.strip() for item in lineList]

        sample_name = lineList[0]
        sample_list.append(sample_name)

        line = ped_file.readline()

    return sample_list


def parse_plink_output(output_filename, species):
    plink_results = {}

    threshold_p_value = 1

    result_fp = open(f"{TMPDIR}{output_filename}.qassoc", "rb")

    line = result_fp.readline()

    value_list = []  # initialize value list, this list will include snp, bp and pvalue info
    p_value_dict = {}
    count = 0

    while line:
        # convert line from str to list
        line_list = build_line_list(line=line)

        # only keep the records whose chromosome name is in db
        if int(line_list[0]) in species.chromosomes.chromosomes and line_list[-1] and line_list[-1].strip() != 'NA':

            chr_name = species.chromosomes.chromosomes[int(line_list[0])]
            snp = line_list[1]
            BP = line_list[2]
            p_value = float(line_list[-1])
            if threshold_p_value >= 0 and threshold_p_value <= 1:
                if p_value < threshold_p_value:
                    p_value_dict[snp] = float(p_value)

            if chr_name in plink_results:
                value_list = plink_results[chr_name]

                # pvalue range is [0,1]
                if threshold_p_value >= 0 and threshold_p_value <= 1:
                    if p_value < threshold_p_value:
                        value_list.append((snp, BP, p_value))
                        count += 1

                plink_results[chr_name] = value_list
                value_list = []
            else:
                if threshold_p_value >= 0 and threshold_p_value <= 1:
                    if p_value < threshold_p_value:
                        value_list.append((snp, BP, p_value))
                        count += 1

                if value_list:
                    plink_results[chr_name] = value_list

                value_list = []

            line = result_fp.readline()
        else:
            line = result_fp.readline()

    return count, p_value_dict

######################################################
# input: line: str,one line read from file
# function: convert line from str to list;
# output: lineList list
#######################################################


def build_line_list(line=""):
    # irregular number of whitespaces between columns
    line_list = line.strip().split(' ')
    line_list = [item for item in line_list if item != '']
    line_list = [item.strip() for item in line_list]

    return line_list