aboutsummaryrefslogtreecommitdiff
path: root/gn2/wqflask/correlation/show_corr_results.py
blob: 1abf1a289dea43da802ba2c17b5ac1ac832e65e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Dr. Robert W. Williams at rwilliams@uthsc.edu
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)

import hashlib
import html
import json

from gn2.base.trait import create_trait, jsonable
from gn2.base.data_set import create_dataset

from gn2.utility import hmac
from gn2.utility.type_checking import get_float, get_int, get_string
from gn2.utility.redis_tools import get_redis_conn
Redis = get_redis_conn()

def set_template_vars(start_vars, correlation_data):
    corr_type = start_vars['corr_type']
    corr_method = start_vars['corr_sample_method']

    if start_vars['dataset'] == "Temp":
        this_dataset_ob = create_dataset(
            dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group'])
    else:
        this_dataset_ob = create_dataset(dataset_name=start_vars['dataset'])
    this_trait = create_trait(dataset=this_dataset_ob,
                              name=start_vars['trait_id'])

    # Store trait sample data in Redis, so additive effect scatterplots can include edited values
    dhash = hashlib.md5()
    dhash.update(start_vars['sample_vals'].encode())
    samples_hash = dhash.hexdigest()
    Redis.set(samples_hash, start_vars['sample_vals'], ex=7*24*60*60)
    correlation_data['dataid'] = samples_hash

    correlation_data['this_trait'] = jsonable(this_trait, this_dataset_ob)
    correlation_data['this_dataset'] = this_dataset_ob.as_monadic_dict().data

    target_dataset_ob = create_dataset(correlation_data['target_dataset'])
    correlation_data['target_dataset'] = target_dataset_ob.as_monadic_dict().data
    correlation_data['table_json'] = correlation_json_for_table(
        start_vars,
        correlation_data,
        target_dataset_ob)

    if target_dataset_ob.type == "ProbeSet":
        filter_cols = [7, 6]
    elif target_dataset_ob.type == "Publish":
        filter_cols = [8, 5]
    else:
        filter_cols = [4, 0]

    correlation_data['corr_method'] = corr_method
    correlation_data['filter_cols'] = filter_cols
    correlation_data['header_fields'] = get_header_fields(
        target_dataset_ob.type, correlation_data['corr_method'])
    correlation_data['formatted_corr_type'] = get_formatted_corr_type(
        corr_type, corr_method)

    return correlation_data


def apply_filters(trait, target_trait, target_dataset, **filters):
    def __p_val_filter__(p_lower, p_upper):

        return  not  (p_lower <= float(trait.get("corr_coefficient",0.0)) <= p_upper)

    def __min_filter__(min_expr):
        if (target_dataset['type'] in ["ProbeSet", "Publish"] and target_trait['mean']):
            return (min_expr != None) and (float(target_trait['mean']) < min_expr)

        return False

    def __location_filter__(location_type, location_chr,
                            min_location_mb, max_location_mb):

        if target_dataset["type"] in ["ProbeSet", "Geno"] and location_type == "gene":
            if not target_trait['mb'] or not target_trait['chr']:
                return True
            return (
                ((location_chr!=None) and (target_trait["chr"]!=location_chr))
                     or
                ((min_location_mb!= None) and (
                    float(target_trait['mb']) < min_location_mb)
                    )

                     or
                    ((max_location_mb != None) and
                    (float(target_trait['mb']) > float(max_location_mb)
                     ))

                )
        elif target_dataset["type"] in ["ProbeSet", "Publish"]:

            return ((location_chr!=None) and (target_trait["lrs_chr"] != location_chr)
                  or 
                  ((min_location_mb != None) and (
                         float(target_trait['lrs_mb']) < float(min_location_mb)))
                  or
                ((max_location_mb != None) and (
                float(target_trait['lrs_mb']) > float(max_location_mb))
            )

                )
            
        return True

    if not target_trait:
        return True
    else:
        # check if one of the condition is not met i.e One is True
        return (__p_val_filter__(
            filters.get("p_range_lower"),
            filters.get("p_range_upper")
        )
            or
            (
                __min_filter__(
                    filters.get("min_expr")
                )
        )
            or
            __location_filter__(
                filters.get("location_type"),
                filters.get("location_chr"),
                filters.get("min_location_mb"),
                filters.get("max_location_mb")


        )
        )


def get_user_filters(start_vars):
    (min_expr, p_min, p_max) = (
        get_float(start_vars, 'min_expr'),
        get_float(start_vars, 'p_range_lower', -1.0),
        get_float(start_vars, 'p_range_upper', 1.0)
    )

    if all(keys in start_vars for keys in ["loc_chr",
                                           "min_loc_mb",
                                           "max_loc_mb"]):

        location_chr = get_string(start_vars, "loc_chr")
        min_location_mb = get_int(start_vars, "min_loc_mb")
        max_location_mb = get_int(start_vars, "max_loc_mb")

    else:
        location_chr = min_location_mb = max_location_mb = None

    return {

        "min_expr": min_expr,
        "p_range_lower": p_min,
        "p_range_upper": p_max,
        "location_chr": location_chr,
        "location_type": start_vars['location_type'],
        "min_location_mb": min_location_mb,
        "max_location_mb": max_location_mb

    }


def generate_table_metadata(all_traits, dataset_metadata, dataset_obj):

    def __fetch_trait_data__(trait, dataset_obj):
        target_trait_ob = create_trait(dataset=dataset_obj,
                                       name=trait,
                                       get_qtl_info=True)
        return jsonable(target_trait_ob, dataset_obj)

    metadata = [__fetch_trait_data__(trait, dataset_obj) for
                trait in (all_traits)]

    return (dataset_metadata | ({str(trait["name"]): trait for trait in metadata}))


def populate_table(dataset_metadata, target_dataset, this_dataset, corr_results, filters):

    def __populate_trait__(idx, trait):

        trait_name = list(trait.keys())[0]
        target_trait = dataset_metadata.get(trait_name)
        trait = trait[trait_name]
        if not apply_filters(trait, target_trait, target_dataset, **filters):
            results_dict = {}
            results_dict['index'] = idx + 1  #
            results_dict['trait_id'] = target_trait['name']
            results_dict['dataset'] = target_dataset['name']
            results_dict['hmac'] = hmac.data_hmac(
                '{}:{}'.format(target_trait['name'], target_dataset['name']))
            results_dict['sample_r'] = f"{float(trait.get('corr_coefficient',0.0)):.3f}"
            results_dict['num_overlap'] = trait.get('num_overlap', 0)
            results_dict['sample_p'] = f"{float(trait.get('p_value',0)):.2e}"
            if target_dataset['type'] == "ProbeSet":
                results_dict['symbol'] = target_trait['symbol']
                results_dict['description'] = "N/A"
                results_dict['location'] = target_trait['location']
                results_dict['mean'] = "N/A"
                results_dict['additive'] = "N/A"
                if target_trait['description'].strip():
                    results_dict['description'] = html.escape(
                        target_trait['description'].strip(), quote=True)
                if target_trait['mean']:
                    results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
                try:
                    results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
                except:
                    results_dict['lod_score'] = "N/A"
                results_dict['lrs_location'] = target_trait['lrs_location']
                if target_trait['additive']:
                    results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
                results_dict['lit_corr'] = "--"
                results_dict['tissue_corr'] = "--"
                results_dict['tissue_pvalue'] = "--"
                if this_dataset['type'] == "ProbeSet":
                    if 'lit_corr' in trait:
                        results_dict['lit_corr'] = (
                            f"{float(trait['lit_corr']):.3f}"
                            if trait["lit_corr"] else "--")
                    if 'tissue_corr' in trait:
                        results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
                        results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
            elif target_dataset['type'] == "Publish":
                results_dict['abbreviation_display'] = "N/A"
                results_dict['description'] = "N/A"
                results_dict['mean'] = "N/A"
                results_dict['authors_display'] = "N/A"
                results_dict['additive'] = "N/A"
                results_dict['pubmed_link'] = "N/A"
                results_dict['pubmed_text'] = target_trait["pubmed_text"]

                if target_trait["abbreviation"]:
                    results_dict['abbreviation'] = target_trait['abbreviation']

                if target_trait["description"].strip():
                    results_dict['description'] = html.escape(
                        target_trait['description'].strip(), quote=True)

                if target_trait["mean"] != "N/A":
                    results_dict['mean'] = f"{float(target_trait['mean']):.3f}"

                results_dict['lrs_location'] = target_trait['lrs_location']

                if target_trait["authors"]:
                    authors_list = target_trait['authors'].split(',')
                    results_dict['authors_display'] = ", ".join(
                        authors_list[:6]) + ", et al." if len(authors_list) > 6 else target_trait['authors']

                if "pubmed_id" in target_trait:
                    results_dict['pubmed_link'] = target_trait['pubmed_link']
                    results_dict['pubmed_text'] = target_trait['pubmed_text']
                try:
                    results_dict["lod_score"] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
                except ValueError:
                    results_dict['lod_score'] = "N/A"
            else:
                results_dict['location'] = target_trait['location']

            return results_dict

    return [__populate_trait__(idx, trait)
            for (idx, trait) in enumerate(corr_results)]


def correlation_json_for_table(start_vars, correlation_data, target_dataset_ob):
    """Return JSON data for use with the DataTable in the correlation result page

    Keyword arguments:
    correlation_data -- Correlation results
    this_trait -- Trait being correlated against a dataset, as a dict
    this_dataset -- Dataset of this_trait, as a monadic dict
    target_dataset_ob - Target dataset, as a Dataset ob
    """
    this_dataset = correlation_data['this_dataset']

    traits = set()
    for trait in correlation_data["correlation_results"]:
        traits.add(list(trait)[0])

    dataset_metadata = generate_table_metadata(traits,
                                               correlation_data["traits_metadata"],
                                               target_dataset_ob)
    return json.dumps([result for result in (
        populate_table(dataset_metadata=dataset_metadata,
                       target_dataset=target_dataset_ob.as_monadic_dict().data,
                       this_dataset=correlation_data['this_dataset'],
                       corr_results=correlation_data['correlation_results'],
                       filters=get_user_filters(start_vars))) if result])


def get_formatted_corr_type(corr_type, corr_method):
    formatted_corr_type = ""
    if corr_type == "lit":
        formatted_corr_type += "Literature Correlation "
    elif corr_type == "tissue":
        formatted_corr_type += "Tissue Correlation "
    elif corr_type == "sample":
        formatted_corr_type += "Genetic Correlation "

    if corr_method == "pearson":
        formatted_corr_type += "(Pearson's r)"
    elif corr_method == "spearman":
        formatted_corr_type += "(Spearman's rho)"
    elif corr_method == "bicor":
        formatted_corr_type += "(Biweight r)"

    return formatted_corr_type


def get_header_fields(data_type, corr_method):
    if data_type == "ProbeSet":
        if corr_method == "spearman":
            header_fields = ['Index',
                             'Record',
                             'Symbol',
                             'Description',
                             'Location',
                             'Mean',
                             'Sample rho',
                             'N',
                             'Sample p(rho)',
                             'Lit rho',
                             'Tissue rho',
                             'Tissue p(rho)',
                             'Max LRS',
                             'Max LRS Location',
                             'Additive Effect']
        else:
            header_fields = ['Index',
                             'Record',
                             'Symbol',
                             'Description',
                             'Location',
                             'Mean',
                             'Sample r',
                             'N',
                             'Sample p(r)',
                             'Lit r',
                             'Tissue r',
                             'Tissue p(r)',
                             'Max LRS',
                             'Max LRS Location',
                             'Additive Effect']
    elif data_type == "Publish":
        if corr_method == "spearman":
            header_fields = ['Index',
                             'Record',
                             'Abbreviation',
                             'Description',
                             'Mean',
                             'Authors',
                             'Year',
                             'Sample rho',
                             'N',
                             'Sample p(rho)',
                             'Max LRS',
                             'Max LRS Location',
                             'Additive Effect']
        else:
            header_fields = ['Index',
                             'Record',
                             'Abbreviation',
                             'Description',
                             'Mean',
                             'Authors',
                             'Year',
                             'Sample r',
                             'N',
                             'Sample p(r)',
                             'Max LRS',
                             'Max LRS Location',
                             'Additive Effect']

    else:
        if corr_method == "spearman":
            header_fields = ['Index',
                             'ID',
                             'Location',
                             'Sample rho',
                             'N',
                             'Sample p(rho)']
        else:
            header_fields = ['Index',
                             'ID',
                             'Location',
                             'Sample r',
                             'N',
                             'Sample p(r)']

    return header_fields